首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1222篇
  免费   324篇
  国内免费   433篇
测绘学   27篇
大气科学   737篇
地球物理   327篇
地质学   238篇
海洋学   375篇
天文学   18篇
综合类   45篇
自然地理   212篇
  2024年   4篇
  2023年   14篇
  2022年   39篇
  2021年   36篇
  2020年   74篇
  2019年   69篇
  2018年   41篇
  2017年   50篇
  2016年   49篇
  2015年   63篇
  2014年   78篇
  2013年   94篇
  2012年   86篇
  2011年   106篇
  2010年   78篇
  2009年   94篇
  2008年   69篇
  2007年   116篇
  2006年   107篇
  2005年   105篇
  2004年   95篇
  2003年   68篇
  2002年   80篇
  2001年   56篇
  2000年   48篇
  1999年   39篇
  1998年   45篇
  1997年   30篇
  1996年   27篇
  1995年   27篇
  1994年   26篇
  1993年   22篇
  1992年   13篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
排序方式: 共有1979条查询结果,搜索用时 31 毫秒
181.
采用1980-2011年气象台站地面气象要素观测资料、高空探空资料,时间和空间加密气象观测站资料,以及中国气象档案馆原始天气图表等资料,基于沙尘气溶胶浓度(PM10)潜势源地贡献函数PSCF(Potential source contribution function)的沙尘系统追踪方法,发展空气质量气象条件PLAM(……)指数对沙尘天气过程的路径跟踪,给出1980-2011年东北亚沙尘天气过程特征分布;采用Spline趋势分析,讨论沙尘天气系统强度的年变化特征。结果表明:基于气溶胶浓度PSCF函数和气象条件PLAM指数追踪得出,中国和东亚地区沙尘天气过程年际强度变化并非单调减弱,具有历史持续性与转折突变性并存的波状变化趋势,出现准10 a的高低频活动特征。  相似文献   
182.
“12.7.21”西南涡极端强降雨的成因分析   总被引:2,自引:1,他引:1  
陈贵川  谌芸  张勇  陈鹏  王欢  黎中菊  刘念  翟丹华  龙美希 《气象》2013,39(12):1529-1541
利用常规观测资料、ECMWF分析场、区域自动站、多普勒雷达及SWAN系统产品等资料对2012年7月21日西南涡暴雨过程及盘龙极端强降雨进行分析。分析发现:此次过程是“北槽南涡”形势下,地面冷空气触发西南涡其东侧辐合上升运动强烈发展,高层强辐散,因而产生了对流性暴雨天气过程;冷空气从西侧侵入西南涡是925 hPa “S”形冷锋形成的直接原因,也是地面辐合线形成的重要因素;极端短时强降雨就发生在西南涡东侧中尺度雨带的中部偏北区域,有地面辐合线相配合,降雨最强时MCC冷云中心TBB达最低值。雷达回波表明:西南涡两侧冷暖空气的交绥促进了β中尺度气旋式环流的形成;偏南风低空急流为强降雨提供了充足的水汽,增强了中低层的垂直风切变,有利于强降水超级单体风暴的发展和维持;盘龙的极端短时强降雨是β中尺度气旋式环流中,伴随有深厚中气旋的强降水超级单体风暴在环流中心附近持续发展的结果。  相似文献   
183.
雷暴大风环境特征及其对风暴结构影响的对比研究   总被引:9,自引:2,他引:7  
2009年6月3日,受冷涡后部次天气尺度横槽的影响,在相邻的两个区域先后出现雷暴大风天气,造成两地强风的风暴类型、地面大风分布及灾害程度差异显著。风暴结构分析表明:产生晋陕大风的雷暴类型为一般单体风暴和脉冲风暴,而产生商丘致灾大风的则为典型的弓形回波。结合观测和数值模拟资料分析产生上述两类雷暴大风的环境要素,并构建其环境温、湿度廓线,结果表明:(1)晋陕大风区环境探空温、湿度廓线呈倒V形,为典型的干下击暴流探空廓线,类似探空在中国西部高原地区夏季常见;(2)商丘雷暴大风区环境温、湿度廓线类似典型湿下击暴流探空。数值模拟给出了典型的一般单体特征结构,老雷暴单体出流在其前方触发新单体。在中低层相对干的环境下多个对流单体的冷下沉形成冷池,强风由对流单体下沉辐散气流叠加在冷池密度流上造成。两类雷暴大风环境风垂直切变特点为:深层环境风垂直切变较弱、强水平风垂直切变集中在中低层。数值模拟表明:在这种风垂直切变配置下,低层湿度成为风暴结构的决定因素:中-高湿度环境下形成高度组织化的飑线,且其单体具有较强中层旋转;低湿度环境下产生组织程度差的一般单体和脉冲风暴,并基于高分辨率数值模式模拟结果给出了环境影响风暴结构的物理图像。  相似文献   
184.
In order to detect the scope and the intensity quanti cationally, the spectrum characteristic of sand and dust storm was analyzed in detail by using several MODIS data; bands that can distinguish sand and dust from cloud and surface were detected; two indices for determining the scope and intensity of sand and dust storm were found out, and were tested in several storms. Our study result shows: 1) The spectral characteristic of sand and dust in solar wavelengths is that the reflectance increases with the increasing of the wavelength. This is similar to the characteristic of the spectrum of soil. Also, the reflectance of large size dusts increases faster than small size dusts. 2) Small size dusts show typical characteristic of aerosol, being sensitive to blue band of 0.46 μm and insensitive to short wave infrared bands of 1.6 and 2.1 μm. 3) Large size dusts do not have aerosol characteristic, not sensitive to blue band but sensitive to short wave infrared bands. 4) Bands of 3.7 and 8.5 μm are sensitive to dusts. The difference of two bands can be used to identify sands and dusts and reflect the intensity to a certain extent. And 5) the two indices are very effective to monitor sands and dusts by testing a lot of sand and dust storm cases during the period of 2002-2005. Also, the method is simple and easy for operational use.  相似文献   
185.
Observations from 560 weather stations in China show that sand–dust storms occur most frequently in April in north China. The region consists of Sub-dry Mid Temperate, Dry Mid Temperate, Sub-dry South Temperate and Dry South Temperate Zones and much of the land surface is desert or semi-desert: it is relatively dry with minimal rainfall and a high annual mean temperature. In most regions of China, the annual mean frequency of sand–dust events decreased sharply between 1980 and 1997 and then increased from 1997 to 2000. Statistical analyses demonstrate that the frequency of sand–dust storms correlates highly with wind speed, which in turn is strongly related to land surface features; on the other hand, a significant correlation between storm events and other atmospheric quantities such as precipitation and temperature was not observed. Accordingly, land surface cover characteristics (vegetation, snowfall and soil texture) may play a significant role in determining the occurrence of sand–dust storms in China. Analysis of Normalized Difference Vegetation Index derived from National Oceanic and Atmospheric Administration and Empirical Orthogonal Function show that since 1995 surface vegetation cover in large areas of Northern China has significantly deteriorated. Moreover, a high correlation is shown to exist among the annual occurrence of sand–dust storms, surface vegetation cover and snowfall. This suggests that the deterioration of surface vegetation cover may strongly influence the occurrence of sand–dust storms in China. Soils with coarse and medium textures are found to be more associated with sand–dust storms than other soils.  相似文献   
186.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
187.
Geoeffective Analysis of CMEs Under Current Sheet Magnetic Coordinates   总被引:1,自引:0,他引:1  
Using 100 CME–ICME events during 1997.01–2002.11, based on the eruptive source locations of CMEs and solar magnetic field observations at the photosphere, a current sheet magnetic coordinate (CMC) system is established in order to statistically study the characteristics of the CME–ICME events and the corresponding geomagnetic storm intensity. The transit times of CMEs from the Sun to the Earth are also investigated, by taking into account of the angle between the CME eruption normal (defined as the vector from the Sun center to the CME eruption source) and the Sun-Earth line. Our preliminary conclusions are: 1. The distribution of the CME sources in our CMC system is obviously different from that in the ordinary heliographic coordinate system. The sources of CMEs are mainly centralized near the heliospheric current sheet (HCS), and the number of events decreases with the increment of the angular distance from the CME source to the HCS on the solar surface; 2. A large portion of the total events belong to the same–side events (referring to the CME source located on the same side of the HCS as the Earth), while only a small portion belong to the opposite–side events (the CME source located on the opposite side of the HCS as the Earth). 3. The intense geomagnetic storms are usually induced by the same–side events, while the opposite side events are commonly associated with relatively weak geomagnetic storms; 4. The angle between the CME normal and the Sun–Earth line is used to estimate the transit time of the CME in order to reflect the influence of propagation characteristic of the CME along the Sun–Earth direction. With our new prediction method in context of the CMC coordinate, the averaged absolute error for these 100 events is 10.33 hours and the resulting relative error is not larger than 30% for 91% of all the events.  相似文献   
188.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
189.
利用中国大陆全球定位GPS台网数据和中国周边地区国际IGS站数据,研究了2006年12月中旬的 磁暴对中国大陆上空电离层的影响。结果显示,该磁暴对中国大陆上空电离层的影响并不显著。  相似文献   
190.
There are two different dust storms in Northeast China, normal dust and alkali dust, from Kerqin sand land and Songnen saline land. As well as visible damages of the dust storms, there are some invisible influences. The authors provide evidences that the bacteria carried by dusts from remote area should not be ignored, but the damages of the alkali dusts are still not clear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号