首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6964篇
  免费   944篇
  国内免费   1435篇
测绘学   530篇
大气科学   1072篇
地球物理   1629篇
地质学   2473篇
海洋学   818篇
天文学   89篇
综合类   483篇
自然地理   2249篇
  2024年   37篇
  2023年   107篇
  2022年   313篇
  2021年   378篇
  2020年   400篇
  2019年   404篇
  2018年   310篇
  2017年   351篇
  2016年   372篇
  2015年   370篇
  2014年   397篇
  2013年   460篇
  2012年   367篇
  2011年   418篇
  2010年   356篇
  2009年   418篇
  2008年   384篇
  2007年   397篇
  2006年   397篇
  2005年   351篇
  2004年   334篇
  2003年   252篇
  2002年   222篇
  2001年   203篇
  2000年   191篇
  1999年   198篇
  1998年   193篇
  1997年   139篇
  1996年   137篇
  1995年   102篇
  1994年   89篇
  1993年   63篇
  1992年   64篇
  1991年   44篇
  1990年   31篇
  1989年   24篇
  1988年   19篇
  1987年   16篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有9343条查询结果,搜索用时 359 毫秒
201.
Irregularly shaped (IRS) particles widely exist in many engineering and industrial fields. The macro physical and mechanical properties of the particle system are governed by the interaction between the particles in the system. The interaction between IRS particles is more complicated because of their complex geometric shape with extremely irregular and co‐existed concave and convex surfaces. These particles may interlock each other, making the sliding and friction of IRS particles more complex than that of particles with regular shape. In order to study the interaction of IRS particles more efficiently, a refined method of constructing discrete element model based on computed tomography scanning of IRS particles is proposed. Three parameters were introduced to control the accuracy and the number of packing spheres. Subsequently, the inertia tensor of the IRS particle model was optimized. Finally, laboratory and numerical open bottom cylinder tests were carried out to verify the refined modeling method. The influence of particle shape, particle position, and mesoscopic friction coefficient on the interaction of particles was also simulated. It is noteworthy that with the increase of mesoscopic friction coefficient, the fluidity of IRS particle assembly decreases, and intermittent limit equilibrium state may appear. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
202.
This paper presents a novel dynamical model to analyze the long‐term response of a percussive drilling system. This departs from existing approaches that usually consider a single activation and bit/rock interaction cycle for the analysis of the process performance. The proposed model integrates the axial dynamics of an elastic piston and an elastic drill bit, a motion‐dependent pressure law to drive the piston, and a generalized bit/rock interaction law representative of the dynamic indentation taking place at the bit/rock interface. It applies to down‐the‐hole percussive drilling as well as top‐hole, with minor modifications. The model does not account for the angular motion or the hole cleaning, however. The model is first formulated mathematically; then, a finite‐dimensional approximation is proposed for computations. Numerical analyses of the model response, for a low‐size down‐the‐hole percussive system, follow. The period‐1 stationary response for the reference configuration is studied in detail, and parametric analyses assessing the influence on the rate of penetration of the bit/rock interaction parameters, the feed force, and the percussive activation parameters are conducted. These analyses reveal that the multiscale nature of the process is well captured by the model and recover expected trends for the influence of the parameters. They also suggest that a significant increase of the penetration rate can be achieved by increasing the percussive frequency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
203.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   
204.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
205.
当前采用交通流数据量化城市人群活动模式研究已经取得了丰硕的研究成果,但是对于同一区域、同一时段不同类型交通流数据反映城市人群活动模式的共性与差异性仍然知之甚少,直接影响了城市人群活动模式挖掘结果的可解释性与实际应用效果。为此,本文旨在对目前广泛采用的智能卡数据(公交和地铁刷卡)和出租车轨迹数据2种重要的交通流数据,从时空分布模式的差异性、行程距离及距离衰减效应的差异性、空间社团结构的差异性3个方面,探索二者反映城市人群活动模式的差异性:① 采用北京市六环以内区域2016年5月9日至15日的智能卡和出租车轨迹数据进行实验分析,研究发现:① 2种交通流反映出行需求的空间分布呈现出高度相关性,但是在同一空间单元上,2种交通流反映出行需求的时间相关性较低;② 2种交通流的使用率在不同空间位置存在明显差异,仅在城市中心区域使用率较为均衡;③ 2种交通流反映人群行程距离的空间分布、距离衰减效应存在明显差异,公共交通对于促进长距离出行更为重要;④ 从2种交通流发现的空间社团结构都显示了城市的多中心结构特征,但是二者发现社团结构存在的差异性表明两种交通方式对城市空间交互起着不同的作用。本研究有助于深入理解多源交通流反映城市人群活动的内在机理,提升城市人群活动模式在城市规划、交通管理等领域的应用效果。  相似文献   
206.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
207.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   
208.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
209.
210.
The interaction between twin‐parallel tunnels affects the tunnelling‐induced ground deformation, which may endanger the nearby structures. In this paper, an analytical solution is presented for problems in determining displacements and stresses around deforming twin‐parallel tunnels in an elastic half plane, on the basis of complex variable theory. As an example, a uniform radial displacement was assumed as the boundary condition for each of the two tunnels. Special attention was paid to the effects of tunnel depth and spacing between the two tunnels on the surface movement to gain deep insight into the effect of the interaction between twin‐parallel tunnels using the proposed analytical approach. It is revealed that the influence of twin tunnel interaction on surface movements diminishes with both the increase of the tunnel depth and the spacing between the two tunnels. The presented analytical solution manifests that, similar to most of the existing numerical results, the principle of superposition can be applied to determine ground deformation of twin‐parallel tunnels with a certain large depth and spacing; otherwise, the interaction effect between the two tunnels should be taken into account for predicting reliable ground movement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号