首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2651篇
  免费   452篇
  国内免费   1182篇
测绘学   198篇
大气科学   62篇
地球物理   416篇
地质学   2722篇
海洋学   357篇
天文学   3篇
综合类   168篇
自然地理   359篇
  2024年   12篇
  2023年   35篇
  2022年   84篇
  2021年   102篇
  2020年   116篇
  2019年   154篇
  2018年   158篇
  2017年   113篇
  2016年   138篇
  2015年   152篇
  2014年   211篇
  2013年   246篇
  2012年   200篇
  2011年   245篇
  2010年   224篇
  2009年   222篇
  2008年   212篇
  2007年   233篇
  2006年   261篇
  2005年   200篇
  2004年   181篇
  2003年   138篇
  2002年   107篇
  2001年   92篇
  2000年   93篇
  1999年   75篇
  1998年   50篇
  1997年   44篇
  1996年   43篇
  1995年   36篇
  1994年   25篇
  1993年   17篇
  1992年   15篇
  1991年   20篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4285条查询结果,搜索用时 31 毫秒
111.
重庆石碗溪小流域坡度和高程对土地利用及经济发展的影响   总被引:21,自引:3,他引:21  
罗云云  李瑞雪  屈明 《山地学报》2004,22(2):254-258
坡度和高程是土地资源固有的两个重要环境因子,与土地利用关系密切,尤其是在山区,坡度和高程基本上决定了土地利用的方向和方式,从而影响农业和经济的发展。石碗溪小流域面积20.73km2,为丘陵低山区。按坡度和高程对土地利用的影响程度,把坡度和高程各分为3级,即:0°~15°、15°~25°、>25°和500m以下、500~800 m、800m以上。从1:10 000地形圈上提取土地坡度和高程分级图,与土地利用现状图又叠加,获取各坡度、高程级及其土地利用类型和数据。结果表明,土地面积随坡度、海拔级的增加而加大。耕地分布在各个高程级0~15°的缓坡上,800m以上地区面积最大,果园和森林大多分布在800m以上>25°的陡坡地上。通过分析比较小流域各个行政村2002年农业总收入及种植业、林业、牧业收入与坡度和高程的关系,可以看出坡度和高程对经济发展的影响。最后,根据坡度和高程状况,结合小流域社会经济条件,提出几点建议,以其为山区小流域土地可持续利用及经济持续发展提供科学依据。  相似文献   
112.
基于EM算法和单幅雷达图像阴影的控制点坡度校正   总被引:1,自引:0,他引:1  
对在我国现有的条件下进行控制点坡度校正的必要性进行了阐述,并分析了EM算法。根据EM算法以及基于区域增长的余弦散射模型建立了控制点坡度校正模型,并用河北省张北地区的雷达影像进行了实验,取得了较高的精度初值。  相似文献   
113.
Lord Howe Island is a small eroded remnant of a Late Miocene shield volcano. A fringing coral reef dissipates wave energy along a portion of the shoreline, but the remainder of the coast is rugged with spectacular high basaltic sea cliffs. This paper investigates the evolution of talus slopes that occur beneath the loftiest cliffs, and places this analysis within the context of a longer history of island planation that has resulted in a wide truncated shelf around the island. During the Last Glacial, when the sea level was lower than at present, talus slopes accumulated around the extent of the island's cliffed coast because material eroded from cliffs by subaerial processes could not be removed by marine processes. The survival of these slopes during the Holocene has depended on a balance achieved between rates of subaerial and marine erosion. This balance is fundamentally influenced by cliff height, as cliffs higher than 200 m are plunging or veneered by talus slopes, whereas lower cliffs have erosional shore platforms. On comparison with published erosion rates from inland basalt scarps it appears that marine processes may account for over 90 per cent of the total cliff retreat that has occurred at Lord Howe Island, yet contemporary coastal morphology attests to the significance of subaerial processes in recent times. It is likely that marine cliffing was very rapid soon after volcanism ceased, but rates of erosion decreased through time as wave energy became increasingly attenuated across a widening planation surface, and as increasing cliff heights yielded greater quantities of talus that provided protection from rapid marine erosion.  相似文献   
114.
It is usually recognized that relatively large amounts of soil particles cannot be transported by raindrop splashes under windless rain. However, the splash-saltation process can cause net transportation in the prevailing wind direction since variations in splash-saltation trajectory due to the wind are expected in wind-driven rain. Therefore, determining the combined effect of rain and wind on the process should enable improvement of the estimation of erosion for any given prediction technique. This paper presents experimental data on the effects of slope aspect, slope gradient, and horizontal wind velocity on the splash-saltation trajectories of soil particles under wind-driven rain. In a wind tunnel facility equipped with a rainfall simulator, the rains driven by horizontal wind velocities of 6, 10, and 14 m s−1 were allowed to impact three agricultural soils packed into 20×55 cm soil pans placed at both windward and leeward slopes of 7%, 15%, and 20%. Splash-saltation trajectories were measured by trapping the splashed particles at distances downwind on a 7-m uniform slope segment in the upslope and downslope directions, respectively, for windward and leeward slopes. Exponential decay curves were fitted for the mass distribution of splash-saltation sediment as a function of travel distance, and the average splash-saltation trajectory was derived from the average value of the fitted functions. The results demonstrated that the average trajectory of a raindrop-induced and wind-driven soil particle was substantially affected by the wind shear velocity, and it had the greatest correlation (r=0.96 for all data) with the shear velocity; however, neither slope aspect nor slope gradient significantly predicted the splash-saltation trajectory. More significantly, a statistical analysis conducted with nonlinear regression model of C1(u*2/g) showed that average trajectory of splash saltation was approximately three times greater than that of typical saltating sand grain.  相似文献   
115.
植物加固路堤边坡浅层土体分析及工程应用   总被引:1,自引:0,他引:1  
在总结植物加固黄土路堤边坡浅层土体的机理之后,结合宝中铁路实际工程,对紫穗槐和柠条两种植物的加固效果进行了详细的分析。  相似文献   
116.
库水位变化对库岸边坡稳定性的影响   总被引:3,自引:0,他引:3  
在假定坡体孔隙水水位为水平线且不考虑渗透作用影响的基础上,基于极限平衡法考察了水位上升及下降的快慢对边坡安全系数的影响。对比计算表明:在水位缓慢变化即坡体内外水位线等高的条件下,边坡的安全系数随着水位坡高比的增大先略减小后急剧增大,且在水位坡高比为0.3处取得最小值,在边坡完全淹没于水中时取得最大值。当边坡完全淹没于水中后,水位高于坡顶的多少对边坡安全系数没有影响;在水位骤降或陡升条件下,相同库水位对应的边坡安全系数基本上均小于水位缓慢变化情况下的安全系数,故工程实际中无论是排水还是蓄水,都应尽量保持水位缓慢变化,这样才能使边坡处于较安全的状态。  相似文献   
117.
This paper presents the findings from a study on gravity-induced slope deformations along the northern slope of Mt. Nuria (Rieti-Italy). The slope extends from the village of Pendenza to the San Vittorino plain and hosts the Peschiera River springs, i.e. the most important springs of the Central Apennines (average discharge: about 18 m3/s).

Detailed geological-geomorphological and geomechanical surveys, supported by a site stress-strain monitoring system and laboratory tests, led us to define the main evolutionary features of the studied phenomena. Based on the collected data, a “geological-evolutionary model” was developed with a view to identifying a spatio-temporal correlation between relief forms, jointing of the rock mass and its stress conditions. The geological-evolutionary model was expected to improve numerical simulations and to test our assumptions.

The numerical model also allowed us to simulate changes in the stress-strain conditions of the rock mass and correlate them with jointing, seepage, as well as with site-detected and site-monitored forms and deformations. In particular, significant relations between seepage, tensile stresses within the rock mass, karst solution and collapse of cavities were identified.  相似文献   

118.
应用趋势型数据指数平滑模型预测了链子崖危岩体监测点GA的位移量.根据其观测数据呈线性趋势的特点,选取趋势型二次指数平滑的线性预测公式和合适的平滑常数值进行了计算预测.预测结果表明位移预测值与实际观测值之间的误差很小,说明该模型可很好地应用于斜坡变形位移的预测.  相似文献   
119.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
120.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号