首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   900篇
  免费   156篇
  国内免费   392篇
测绘学   88篇
大气科学   5篇
地球物理   334篇
地质学   807篇
海洋学   100篇
天文学   1篇
综合类   53篇
自然地理   60篇
  2024年   3篇
  2023年   10篇
  2022年   22篇
  2021年   44篇
  2020年   35篇
  2019年   47篇
  2018年   33篇
  2017年   37篇
  2016年   39篇
  2015年   65篇
  2014年   69篇
  2013年   76篇
  2012年   57篇
  2011年   82篇
  2010年   55篇
  2009年   91篇
  2008年   91篇
  2007年   108篇
  2006年   95篇
  2005年   69篇
  2004年   62篇
  2003年   59篇
  2002年   29篇
  2001年   22篇
  2000年   23篇
  1999年   25篇
  1998年   26篇
  1997年   13篇
  1996年   18篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   2篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1448条查询结果,搜索用时 15 毫秒
61.
Empirical prediction of coseismic landslide dam formation   总被引:1,自引:0,他引:1       下载免费PDF全文
In this study we develop an empirical method to estimate the volume threshold for predicting coseismic landslide dam formation using landscape parameters obtained from digital elevation models (DEMs). We hypothesize that the potential runout and volume of landslides, together with river features, determine the likelihood of the formation of a landslide dam. To develop this method, a database was created by randomly selecting 140 damming and 200 non‐damming landslides from 501 landslide dams and > 60 000 landslides induced by the Mw 7.9 2008 Wenchuan earthquake in China. We used this database to parameterize empirical runout models by stepwise multivariate regression. We find that factors controlling landslide runout are landslide initiation volume, landslide type, internal relief (H) and the H/L ratio (between H and landslide horizontal distance to river, L). In order to obtain a first volume threshold for a landslide to reach a river, the runout regression equations were converted into inverse volume equations by taking the runout to be the distance to river. A second volume threshold above which a landslide is predicted to block a river was determined by the correlation between river width and landslide volume of the known damming landslides. The larger of these two thresholds was taken as the final damming threshold. This method was applied to several landslide types over a fine geographic grid of assumed initiation points in a selected catchment. The overall prediction accuracy was 97.4% and 86.0% for non‐damming and damming landslides, respectively. The model was further tested by predicting the damming landslides over the whole region, with promising results. We conclude that our method is robust and reliable for the Wenchuan event. In combination with pre‐event landslide susceptibility and frequency–size assessments, it can be used to predict likely damming locations of future coseismic landslides, thereby helping to plan emergency response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
62.
Decoupled seismic analysis of an earth dam   总被引:2,自引:0,他引:2  
The seismic stability of an earth dam is evaluated via the decoupled displacement analysis using the accelerograms obtained by ground response analysis to compute the earthquake-induced displacements. The response analysis of the dam is carried out under both 1D and 2D conditions, incorporating the non-linear soil behaviour through the equivalent linear method. Ten artificial and five real accelerograms were used as input motions and four different depths were assumed for the bedrock.1D and 2D response analyses were in a fair agreement with the exception of the top third of the dam where only a 2D modelling of the problem could ensure that the acceleration field is properly described. The acceleration amplification ratio obtained in the 2D analyses was equal to about 2 in all the cases considered, consistently with data from real case histories.The maximum permanent displacements computed by the sliding block analysis were small, being less than 10% of the service freeboard; a satisfactory performance of the dam can then be envisaged for any of the seismic scenarios considered in the analyses.  相似文献   
63.
A two-dimensional elastic Chebyshev spectral element method (SPEM) is used to model the seismic wavefield within a massive structure and in its vicinity. We consider 2-D models where a linear elastic structure, with quadrangular cross-section, resting on an elastic homogeneous half-space, is impinged upon by the waves generated by a surface impulse at some distance. The scattering of Rayleigh waves and the response of the structure are extensively analysed in a parametric way, varying size, mechanical parameters and shape of the load. Some of the models considered are representative of embankments and earth dams. The simulation shows that some models resonate, storing part of the incoming energy. With realistic parameters, the lowest resonance frequency is due to pure shear deformation and is controlled by the shear velocity and height of the load. Flexural modes are excited only at higher frequencies. The acceleration at the top of the structure may be five/seven times higher than at the base, depending on the mass of the structure. The gradual release of trapped energy produces a ground roll lasting several seconds after the wave front has passed. The ground-roll amplitude depends on the sturcture's mass and can be as large as 30% of the peak acceleration. Outside resonance conditions, the ground motion is almost unaffected by the presence of the artefact; the horizontal motion on top of it is nearly twice the motion at ground level. Similar results should be expected when the incident field is an upcoming shear wave. A qualitative discussion shows that the presence of anelastic attenuation in the embankment does not significantly alter the preceding conclusions, unless it is of very low values (e.g. Q < 15).The modelling results that we discuss indicate that the soil-structure interaction may substantially alter the ‘free-field’ ground motion. From a practical point of view, the main conclusions are: (1) careful analysis is necessary when interpreting seismic records collected in the vicinity of large artefacts; (2) seismic hazard at a site may depend on the presence of man-made structures such as embankments, dams, tall and massive buildings.  相似文献   
64.
Seismically reactivated Hattian slide in Kashmir, Northern Pakistan   总被引:2,自引:0,他引:2  
The Pakistan 2005 earthquake, of magnitude 7.6, caused severe damage on landscape and infrastructure, in addition to numerous casualties. The event reactivated Hattian Slide, creating a rock avalanche in a location where earlier mass movements had happened already, as indicated by satellite imagery and ground investigation. The slide originated on Dana Hill, in the upper catchment area of Hattian on Karli Stream, a tributary of Jhelum River, Pakistan, and buried the hamlet Dandbeh and several farms nearby. A natural dam accumulated, impounding two lakes, the larger one threatening parts of downstream Hattian Village with flooding. An access road and artificial spillways needed to be constructed in very short time to minimize the flooding risk. As shown by this example, when pointing out the risk of large-scale damage to population and infrastructure by way of hazard indication maps of seismically active regions, and preparing for alleviation of that risk, it is advisable to consider the complete Holocene history of the slopes involved.  相似文献   
65.
In this study, we captured how a river channel responds to a sediment pulse originating from a dam removal using multiple lines of evidence derived from streamflow gages along the Patapsco River, Maryland, USA. Gages captured characteristics of the sediment pulse, including travel times of its leading edge (~7.8 km yr−1) and peak (~2.6 km yr−1) and suggest both translation and increasing dispersion. The pulse also changed local hydraulics and energy conditions, increasing flow velocities and Froude number, due to bed fining, homogenization and/or slope adjustment. Immediately downstream of the dam, recovery to pre-pulse conditions occurred within the year, but farther downstream recovery was slower, with the tail of the sediment pulse working through the lower river by the end of the study 7 years later. The patterns and timing of channel change associated with the sediment pulse were not driven by large flow or suspended sediment-transporting events, with change mostly occurring during lower flows. This suggests pulse mobility was controlled by process-factors largely independent of high flow. In contrast, persistent changes occurred to out-of-channel flooding dynamics. Stage associated with flooding increased during the arrival of the sediment pulse, 1 to 2 years after dam removal, suggesting persistent sediment deposition at the channel margins and nearby floodplain. This resulted in National Weather Service-indicated flood stages being attained by 3–43% smaller discharges compared to earlier in the study period. This study captured a two-signal response from the sediment pulse: (1) short- to medium-term (weeks to months) translation and dispersion within the channel, resulting in aggradation and recovery of bed elevations and changing local hydraulics; and (2) dispersion and persistent longer-term (years) effects of sediment deposition on overbank surfaces. This study further demonstrated the utility of US Geological Survey gage data to quantify geomorphic change, increase temporal resolution, and provide insights into trajectories of change over varying spatial and temporal scales.  相似文献   
66.
Risk analysis for clustered check dams due to heavy rainfall   总被引:6,自引:1,他引:6  
Check dams are commonly constructed around the world for alleviating soil erosion and preventing sedimentation of downstream rivers and reservoirs.Check dams are more vulnerable to failure due to their less stringent flood control standards compared to other dams.Determining the critical precipitation that will result in overtopping of a dam is a useful approach to assessing the risk of failure on a probabilistic basis and for providing early warning in case of an emergency.However,many check dams are built in groups,spreading in several tributaries in cascade forms,comprising a complex network.Determining the critical precipitation for dam overtopping requires a knowledge of its upstream dams on whether they survived or were overtopped during the same storm,while these upstream dams in turn need the information for their upstream dams.The current paper presents an approach of decomposing the dam cluster into(1)the heading dam,(2)border dams,and(3)intermediate dams.The algorithm begins with the border dams that have no upstream dams and proceeds with upgraded maps without the previous border dams until all the dams have been checked.It is believed that this approach is applicable for small-scale check dam systems where the time lag of flood routing can be neglected.As a pilot study,the current paper presents the analytical results for the Wangmaogou Check Dam System that has 22 dams connected in series and parallel.The algorithm clearly identified 7 surviving dams,with the remaining ones being overtopped for a storm of 179.6 mm in 12 h,which is associated with a return period of one in 200 years.  相似文献   
67.
我国近年水库地震监测综述   总被引:4,自引:4,他引:4  
在较完整地收集我国水库诱发地震震例的基础上,回顾了我国水库诱发地震监测的成长进步厍程。本文认为无线遥测组网和计算机实时处理方式是我国近年水库诱发地震监测的主流,数字化则是其发展方向。作者提出了按地震监测系统的主要特征。对水库地震监测台网分类划代方法,将我国已客在建的水库地震监测台网划分四代。本文较详细地介绍了近年建成投测的二滩,大桥、小浪底和李家峡等第三代水库遥测地震台网的基本情况。对正在设计建设  相似文献   
68.
《水文科学杂志》2013,58(2):277-291
Abstract

A group of ancient dams (c. second—first century BC) was located during an archaeological study of the Sanchi area in central India. Comparison of reservoir volumes with estimated inflows suggests that their design was based on hydrological understanding.  相似文献   
69.
软弱结构面塑性程度高、强度低,在地下水长期作用下,很易导致岩体产生变形、形成集中渗漏通道及渗透破坏。软弱结构面的渗透稳定性,一直是水利水电工程的重要工程地质及水文地质问题之一,目前对其渗透破坏机理的认识还存在不少尚未解决的问题。针对已有对基岩软弱结构形成集中渗漏通道研究的不足,本文在软弱结构面内讨论渗透变形问题,主要探讨了软弱结构面受水流冲刷发展的机制,以及土粒起动处于不同位置时的临界流速及相应隙宽。最后介绍了在适当地质等条件下,基岩软弱结构面可形成集中渗漏通道的实例。  相似文献   
70.
An attempt has been made to summarise the methods of approach used in assessing the dynamic behaviour and safety of earth and rock-fill dams under seismic shaking until about the present time, from the soil engineer's point of view. Shortcomings of the pseudo-static method, procedures to estimate the permanent deformations, liquefaction effects, and experience gained from the previous events have been reviewed. Observing that the most important cause of instability is the occurence liquefaction during ground motions, cyclic approach and steady-state approach in assessing the liquefaction potential have been addressed and recent practical approaches of analysis and design have been referred. It has been found noteworthy to recall that incidence of failure or serious damage to well-engineered dams has not been experienced, even under strong ground shaking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号