首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   46篇
  国内免费   15篇
测绘学   10篇
大气科学   12篇
地球物理   124篇
地质学   28篇
海洋学   11篇
天文学   1篇
综合类   2篇
自然地理   13篇
  2019年   3篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   10篇
  2003年   9篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1997年   8篇
  1996年   2篇
排序方式: 共有201条查询结果,搜索用时 281 毫秒
61.
艾细根  刘宇迪 《气象》2015,41(6):707-707
为了模拟球面平流传输过程,本文基于球面阴阳重叠网格设计了一种两时间层半拉格朗日平流方案.该方案在球面坐标下采用新型的LE水平跳点网格,同时针对阴阳网格重叠区,采用了不同插值方法进行比较分析,且进行了相关的理想数值试验对方案设计效果进行评估.数值试验表明方案设计是成功的,阴阳网格重叠区平流对插值方案比较敏感;半拉格朗日方案能较好地模拟球面刚体平流和变形涡旋的结构、位置及演变过程,并具有较好的数值稳定性和较高的数值精度.  相似文献   
62.
针对水下平台工作环境复杂、通信实时性和可靠性要求高的特点,设计了一套分布式冗余通信系统。该通信系统以西门子PLC S7-400H和工控机为主控制器,基于波分复用技术建立了冗余的光纤传输通路;同时提出了一种新型的扩展单调速率算法,对水下平台的任务进行了优先级分配,并基于此算法进行了通信系统软件设计。经过可靠性分析和半实物仿真试验验证,该通信系统的实时性、可靠性及冗余机制符合设计要求,可以成功应用于水下平台,效果良好。  相似文献   
63.
This study investigates how medium‐term gully‐development data differ from short‐term data, and which factors influence their spatial and temporal variability at nine selected actively retreating bank gullies situated in four Spanish basin landscapes. Small‐format aerial photographs using unmanned, remote‐controlled platforms were taken at the gully sites in short‐term intervals of one to two years over medium‐term periods of seven to 13 years and gully change during each period was determined using stereophotogrammetry and a geographic information system. Results show a high variability of annual gully retreat rates both between gullies and between observation periods. The mean linear headcut retreat rates range between 0·02 and 0·26 m a–1. Gully area loss was between 0·8 and 22 m² a–1 and gully volume loss between 0·5 to 100 m³ a–1, of which sidewall erosion may play a considerable part. A non‐linear relationship between catchment area and medium‐term gully headcut volume change was found for these gullies. The short‐term changes observed at the individual gullies show very high variability: on average, the maximum headcut volume change observed in 7–13 years was 14·3 times larger than the minimum change. Dependency on precipitation varies but is clearly higher for headcuts than sidewalls, especially in smaller and less disturbed catchments. The varying influences of land use and human activities with their positive or negative effects on runoff production and connectivity play a dominant role in these study areas, both for short‐term variability and medium‐term difference in gully development. The study proves the value of capturing spatially continuous, high‐resolution three‐dimensional data using small‐format aerial photography for detailed gully monitoring. Results confirm that short‐term data are not representative of longer‐term gully development and demonstrate the necessity for medium‐ to long‐term monitoring. However, short‐term data are still required to understand the processes – particularly human activity at varying time scales – causing fluctuations in gully erosion rates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
64.
The results of a study evaluating the recharge/discharge conditions of an unconfined stressed granitic aquifer situated in a semi‐arid region of Andhra Pradesh, Southern India are presented. Over the last three decades, excessive withdrawal of groundwater has drastically lowered the water table to the bedrock. The watershed studied was divided into four zones based on geomorphology and hydrogeological conditions. Using environmental chloride data pertaining to groundwater, soil depth profiles, and some hydrogeologic and hydrochemical observations, a recharge model for the watershed was developed. The model revealed that the bulk of the vertical recharge in the western elevated land occurs through preferred pathways and that a small fraction occurs through the soil matrix. In addition, the watershed has a poor hydrogeologic fabric, as indicated by the small range of matrix flow recharge (1 to 1·5% of rainfall) among the four zones. The dominating preferential flow was high (~16% of the annual average rainfall) in the valley fills, but decreased to 5–5·5% in the plains. Furthermore, although the bulk of the recharge occurs vertically, considerable lateral movement of groundwater down the slope indicates that sequential hydrochemical changes occur. Distinct geomorphological features that exist in the watershed support the proposed model. Situations similar to those described above may exist in numerous watersheds in the granitic hard rock region; therefore, information obtained from investigations conducted in this watershed can aid in the development of plans enabling the sustainable exploitation of watersheds that have not yet been developed, as well as implementation of appropriate rainwater conservation measures in over‐exploited watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
65.
M. J. Booij 《水文研究》2003,17(13):2581-2598
Appropriate spatial scales of dominant variables are determined and integrated into an appropriate model scale. This is done in the context of the impact of climate change on flooding in the River Meuse in Western Europe. The objective is achieved by using observed elevation, soil type, land use type and daily precipitation data from several sources and employing different relationships between scales, variable statistics and outputs. The appropriate spatial scale of a key variable is assumed to be equal to a fraction of the spatial correlation length of that variable. This fraction was determined on the basis of relationships between statistics and scale and an accepted error in the estimation of the statistic of 10%. This procedure resulted in an appropriate spatial scale for precipitation of about 20 km in an earlier study. The application to river basin variables revealed appropriate spatial scales for elevation, soil and land use of respectively 0·1, 5·3 and 3·3 km. The appropriate model scale is determined by multiplying the appropriate variable scales with their associated weights. The weights are based on SCS curve number method relationships between the peak discharge and some specific parameters like slope and curve number. The values of these parameters are dependent on the scale of each key variable. The resulting appropriate model scale is about 10 km, implying 225–250 model cells in an appropriate model of the Meuse basin meant to assess the impact of climate change on river flooding. The usefulness of the appropriateness procedure is in its ability to assess the appropriate scales of the individual key variables before model construction and integrate them in a balanced way into an appropriate model scale. Another use of the procedure is that it provides a framework for decisions about the reduction or expansion of data networks and needs. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
66.
V. U. Smakhtin 《水文研究》2002,16(13):2613-2620
Subsurface flow is an important component of the catchment hydrological cycle. Various mechanisms of this process and their role in storm‐flow generation attracted the attention of many researchers throughout the twentieth century. The results of most of these studies are well documented. However, similar studies conducted in the past by many Russian hydrologists have never been made available to the English speaking hydrological community. This paper attempts to fill this gap and briefly review some of these investigations, focusing on their main results. It starts with the review of the early experimental studies (after 1930s–1950s), which allow the main characteristics of subsurface storm flow to be established. This is followed by a review of the research conducted in 1960s, which resulted in some conceptualization of the subsurface flow mechanisms. The paper also draws some parallels between this, mostly unknown, subsurface flow research in Russia and the better‐known contemporary studies of this process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
67.
The effect of changing palaeoclimate and palaeoenvironment on human evolution during the Pleistocene is debated, but hampered by few East African records directly associated with archaeological sites prior to the Last Glacial Maximum. Middle to Late Pleistocene deposits on the shoreline of eastern Lake Victoria preserve abundant vertebrate fossils and Middle Stone Age arte‐facts associated with riverine tufas at the base of the deposits, which are ideal for palaeoenvironmental reconstructions. New data from tufas identified on Rusinga Island and on the mainland near Karungu, Kenya are provided from outcrop, thin sections, mineralogical, stable isotopic and U‐series dating analyses. Tufa is identified in four sites: Nyamita (94·0 ± 3·3 and 111·4 ± 4·2 ka); Kisaaka, Aringo (455 ± 45 ka); and Obware. The age ranges of these tufa deposits demonstrate that spring‐fed rivers were a recurrent, variably preserved feature on the Pleistocene landscape for ca 360 kyr. Poor sorting of clastic facies from all sites indicates flashy, ephemeral discharge, but these facies are commonly associated with barrage tufas, paludal environments with δ13C values of ca 10‰ indicative of C3 plants and fossil Hippopotamus, all of which indicate a perennial water source. Other tufa deposits from Nyamita, Obware and Aringo have a mixed C3/C4 signature consistent with a semi‐arid C4 grassland surrounding these spring‐fed rivers. The δ18O values of tufa from Nyamita are on average ca 1‰ more negative than calcite precipitated from modern rainfall in the region, suggesting greater contribution of depleted monsoonal input, similar to the Last Glacial Maximum. Microdebitage and surface‐collected artefacts indicate that early modern humans were utilizing these spring‐fed rivers. The presence of spring?fed rivers would have afforded animals a reliable water source, sustaining a diverse plant and animal community in an otherwise arid environment.  相似文献   
68.
A tuned mass damper (TMD) system consists of an added mass with properly functioning spring and damping elements for providing frequency‐dependent damping in a primary structure. The advantage of a friction‐type TMD, that is, a nonlinear TMD, is its energy dissipation via a friction mechanism. In contrast, the disadvantages of a passive friction TMD (PF‐TMD) are its fixed and predetermined slip load and loss of tuning and energy dissipation capabilities when it is in a stick state. A semi‐active friction TMD (SAF‐TMD) is used to overcome these disadvantages. The SAF‐TMD can adjust its slip force in response to structure motion. To verify its feasibility, a prototype SAF‐TMD was fabricated and tested dynamically using a shaking table test. A nonsticking friction control law was used to keep the SAF‐TMD activated and in a slip state in earthquakes at varying intensities. The shaking table test results demonstrated that: (i) the experimental results are consistent with the theoretical results; (ii) the SAF‐TMD is more effective than the PF‐TMD given a similar peak TMD stroke; and (iii) the SAF‐TMD can also prevent a residual TMD stroke in a PF‐TMD system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
69.
Semi‐active variable stiffness resettable devices can reduce seismic demands and damages in structures. Despite their advantages, variable stiffness resettable devices are under‐utilized mainly because of the shortage of fundamental research in quantifying the sensitivity of key seismic response parameters, and losses, in structures that use such systems for seismic hazard mitigation. Within this setting, the research summarized herein measures the effectiveness of semi‐active resettable energy dissipating devices in the Single‐Degree‐of‐Freedom domain aiming at quantifying the sensitivity of their seismic response to variation in control parameters and generating the required knowledge to utilize such semi‐active devices in the Multi‐Degree‐of‐Freedom domain. The performance (i.e. maximum relative displacement and peak absolute acceleration demands) of Single‐Degree‐of‐Freedom systems with an array of semi‐active control logics under various dynamic excitation regimes is studied. Two sets of 40 ground motions representing various seismic loading conditions (i.e. pulse‐like and rock‐site ground motions) are used, and an efficient control logic for mitigating these seismic demands is proposed. Numerical results show that proposed control logic enables a decrease of 40–60% for both maximum relative displacement and seismic base shear and 15–25% decrease for peak absolute acceleration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
70.
Floor isolation is an alternative to base isolation for protecting a specific group of equipment installed on a single floor or room in a fixed‐base structure. The acceleration of the isolated floor should be mitigated to protect the equipment, and the displacement needs to be suppressed, especially under long‐period motions, to save more space for the floor to place equipment. To design floor isolation systems that reduce acceleration and displacement for both short‐period and long‐period motions, semi‐active control with a newly proposed method using the linear quadratic regulator (LQR) control with frequency‐dependent scheduled gain (LQRSG) is adopted. The LQRSG method is developed to account for the frequency characteristics of the input motion. It updates the control gain calculated by the LQR control based on the relationship between the control gain and dominant frequency of the input motion. The dominant frequency is detected in real time using a window method. To verify the effectiveness of the LQRSG method, a series of shake table tests is performed for a semi‐active floor isolation system with rolling pendulum isolators and a magnetic‐rheological damper. The test results show that the LQRSG method is significantly more effective than the LQR control over a range of short‐period and long‐period motions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号