首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   46篇
  国内免费   14篇
测绘学   9篇
大气科学   12篇
地球物理   124篇
地质学   27篇
海洋学   11篇
天文学   1篇
综合类   2篇
自然地理   13篇
  2019年   2篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   16篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   10篇
  2003年   9篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1997年   8篇
  1996年   2篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
191.
Taiwan suffers from heavy storm rainfall during the typhoon season. This usually causes large river runoff, overland flow, erosion, landslides, debris flows, loss of power, etc. In order to evaluate storm impacts on the downstream basin, a real‐time hydrological modelling is used to estimate potential hazard areas. This can be used as a decision‐support system for the Emergency Response Center, National Fire Agency Ministry, to make ‘real‐time’ responses and minimize possible damage to human life and property. This study used 34 observed events from 14 telemetered rain‐gauges in the Tamshui River basin, Taiwan, to study the spatial–temporal characteristics of typhoon rainfall. In the study, regionalized theory and cross‐semi‐variograms were used to identify the spatial‐temporal structure of typhoon rainfall. The power form and parameters of the cross‐semi‐variogram were derived through analysis of the observed data. In the end, cross‐validation was used to evaluate the performance of the interpolated rainfall on the river basin. The results show the derived rainfall interpolator represents the observed events well, which indicates the rainfall interpolator can be used as a spatial‐temporal rainfall input for real‐time hydrological modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
192.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
193.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
194.
Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of 137Cs inventory and depth‐profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, northeastern Australia; a 143 000 km2 semi‐arid river system. Caesium‐137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of 137Cs concentration from each floodplain site and a reference location were recorded. The areal density of 137Cs at reference locations ranged from 13 to 978 Bq m–2 (0–1367 Bq m–2 at the 95% confidence interval), and the mean value ± 2 (standard error of the mean) was 436 ± 264 Bq m–2, similar to published data from other Southern Hemisphere locations. Floodplain inventories ranged from 68 to 1142 Bq m–2 (0–1692 Bq m–2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth‐profiles of 137Cs concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from 137Cs data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0 to 15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low 137Cs fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed 137Cs. In this low‐fallout environment, detailed depth‐profile data are necessary for investigating sedimentation using 137Cs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
195.
Although the design and applications of linear tuned mass damper (TMD) systems are well developed, nonlinear TMD systems are still in the developing stage. Energy dissipation via friction mechanisms is an effective means for mitigating the vibration of seismic structures. A friction‐type TMD, i.e. a nonlinear TMD, has the advantages of energy dissipation via a friction mechanism without requiring additional damping devices. However, a passive‐friction TMD (PF‐TMD) has such disadvantages as a fixed and pre‐determined slip load and may lose its tuning and energy dissipation abilities when it is in the stick state. A novel semi‐active‐friction TMD (SAF‐TMD) is used to overcome these disadvantages. The proposed SAF‐TMD has the following features. (1) The frictional force of the SAF‐TMD can be regulated in accordance with system responses. (2) The frictional force can be amplified via a braking mechanism. (3) A large TMD stroke can be utilized to enhance control performance. A non‐sticking friction control law, which can keep the SAF‐TMD activated throughout an earthquake with an arbitrary intensity, was applied. The performance of the PF‐TMD and SAF‐TMD systems in protecting seismic structures was investigated numerically. The results demonstrate that the SAF‐TMD performs better than the PF‐TMD and can prevent a residual stroke that may occur in a PF‐TMD system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
196.
Owing to the fixed design parameters in traditional isolation systems, the optimal isolation performance may not always be achieved when a structure is subjected to a nondesign earthquake. At the same time, even though an active isolation system (AIS) can offer a better reduction for different seismic waves, in practice the control energy required still constrains its application. To solve this problem, a novel semi‐active isolation system called the Leverage‐type Stiffness Controllable Isolation System (LSCIS) is proposed in this paper. By utilizing a simple leverage mechanism, the isolation stiffness and the isolation period of the LSCIS can be easily controlled by adjusting the position of the pivot point of the leverage arm. The theoretical basis and the control law for the proposed system were first explained in this work, and then a shaking table test was conducted to verify the theory and the feasibility of the LSCIS. As shown in the experiment, the seismic behavior of the LSCIS can be successfully simulated by the theoretical model, and the isolation stiffness can be properly adjusted to reduce the seismic energy input in the LSCIS system. A comparison of the LSCIS with the other systems including passive isolation and AISs has demonstrated that based on the same limitation of base displacement, better acceleration reduction can be achieved by the LSCIS than by any of the other isolation systems. In addition, the control energy required by the LSCIS is lower than that for an AIS using the traditional LQR control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
197.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
198.
Rain‐gauge catch efficiencies are affected by wind. Wind makes raindrops fall at an angle of inclination and the effective diameter of the rain gauge orifice smaller than if raindrops fall into the gauge vertically. Two spherical and two semi‐spherical orifices were designed to modify standard gauges and others in use today. The two spherical orifices catch rain with an effective diameter always equal to the actual diameter regardless of wind speed and direction. The semi‐spherical orifices, used side‐by‐side with a standard gauge, correct 50% of catch deficiencies made by the standard gauge. Tests based on 115 storms show that the four new gauges caught more rainfall than the standard gauge, with an average catch increase ranging from 8% to 16%. Compared with the pit gauge, average deficiency in catch ranged from ?1% (spherical rain gauge orifice with cylinders) to 4%, whereas the deficiency for the standard gauge was ?10%. Percentage deficiencies of the new gauges were positively affected by wind speed, raindrop inclination and rainfall intensity. Although the new gauges tended to underestimate the standard gauge in small storms (<0·25 cm) and overestimated the pit gauge under strong winds, their deviations are small. Underestimates for small storms could be improved by using gauge materials that reduce surface temperature, evaporation and water retention. The gauges are simple in design, easy to operate and inexpensive. In order to maintain a historically consistent set of rainfall data, a dual‐gauge (standard gauge + spherical gauge) is recommended for existing rainfall stations. The new rain gauge orifices are suitable for large‐scale applications. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
199.
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling tool for simulating the time‐dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in‐stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in‐stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l?1. The general trends in the in‐stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l?1) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in‐stream generation, storage and release of the fine sediment fraction. The in‐stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号