首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   46篇
  国内免费   15篇
测绘学   10篇
大气科学   12篇
地球物理   124篇
地质学   28篇
海洋学   11篇
天文学   1篇
综合类   2篇
自然地理   13篇
  2019年   3篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   10篇
  2003年   9篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1997年   8篇
  1996年   2篇
排序方式: 共有201条查询结果,搜索用时 218 毫秒
121.
Output generated by hydrologic simulation models is traditionally calibrated and validated using split‐samples of observed time series of total water flow, measured at the drainage outlet of the river basin. Although this approach might yield an optimal set of model parameters, capable of reproducing the total flow, it has been observed that the flow components making up the total flow are often poorly reproduced. Previous research suggests that notwithstanding the underlying physical processes are often poorly mimicked through calibration of a set of parameters hydrologic models most of the time acceptably estimates the total flow. The objective of this study was to calibrate and validate a computer‐based hydrologic model with respect to the total and slow flow. The quick flow component used in this study was taken as the difference between the total and slow flow. Model calibrations were pursued on the basis of comparing the simulated output with the observed total and slow flow using qualitative (graphical) assessments and quantitative (statistical) indicators. The study was conducted using the Soil and Water Assessment Tool (SWAT) model and a 10‐year historical record (1986–1995) of the daily flow components of the Grote Nete River basin (Belgium). The data of the period 1986–1989 were used for model calibration and data of the period 1990–1995 for model validation. The predicted daily average total flow matched the observed values with a Nash–Sutcliff coefficient of 0·67 during calibration and 0·66 during validation. The Nash–Sutcliff coefficient for slow flow was 0·72 during calibration and 0·61 during validation. Analysis of high and low flows indicated that the model is unbiased. A sensitivity analysis revealed that for the modelling of the daily total flow, accurate estimation of all 10 calibration parameters in the SWAT model is justified, while for the slow flow processes only 4 out of the set of 10 parameters were identified as most sensitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
122.
Evaluating performances of four commonly used evaporation estimate methods, namely; Bowen ratio energy balance (BREB), mass transfer (MT), Priestley–Taylor (PT) and pan evaporation (PE), based on 4 years experimental data, the most effective and the reliable evaporation estimates model for the semi‐arid region of India has been derived. The various goodness‐of‐fit measures, such as; coefficient of determination (R2), index of agreement (D), root mean square error (RMSE), and relative bias (RB) have been chosen for the performance evaluation. Of these models, the PT model has been found most promising when the Bowen ratio, β is known a priori, and based on its limited data requirement. The responses of the BREB, the PT, and the PE models were found comparable to each other, while the response of the MT model differed to match with the responses of the other three models. The coefficients, β of the BREB, µ of the MT, α of the PT and KP of the PE model were estimated as 0·07, 2·35, 1·31 and 0·65, respectively. The PT model can successfully be extended for free water surface evaporation estimates in semi‐arid India. A linear regression model depicting relationship between daily air and water temperature has been developed using the observed water temperatures and the corresponding air temperatures. The model helped to generate unrecorded water temperatures for the corresponding ambient air temperatures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
123.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
124.
Environmental tracers, such as tritium, have generally been used to estimate aquifer recharge under natural conditions. A tritium tracer test is presented for estimating recharge under semi‐arid and irrigated conditions. The test was performed along 429 days (June 2007–August 2008) on an experimental plot located in SE Spain with drip irrigation and annual row crops (rotation of lettuce and melon), in which common agricultural practices were followed in open air. Tritiated water was sprinkled (simulated rainfall) over the plot, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure tritium concentration in soil water samples. Tritium transport, as liquid or vapor phase, was simulated with the one‐dimensional numerical code SOLVEG. Simulations show that the crop water use was below potential levels, despite regular irrigation. Continuous high water content in soil promoted a great impact of rainfall events on the aquifer recharge. The results obtained from tritium tracer test have been compared with other independent recharge assessment, soil water balance method, to evaluate the reliability of the first one. Total recharge from tracer test was 476 mm for the October 2007–September 2008 period versus 561 mm from soil water balance method for the same period, which represents 37.1% and 43.7% of the applied water (1284 mm, irrigation + precipitation), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
125.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
126.
The ability to predict vegetation cover effects on thermal/water regimes can enhance our understanding of canopy controls on evapotranspiration. The Simultaneous Heat and Water (SHAW) model is a detailed process model of heat and water movement in a snow–residue–soil system. This paper describes provisions added to the SHAW model for vegetation cover and simulation of heat and water transfer through the soil–plant–air continuum. The model was applied to four full years (May 2003–April 2007) of data collected on sparse grassland at Nalaikh in north‐eastern Mongolia. Simulated soil temperature and radiation components agreed reasonably well with measured values. The absolute differences between simulated and measured soil temperatures were larger at both the surface layer and deeper layer, but relatively smaller in the layer from 0·8 to 2·4 m. Radiation components were mimicked by the SHAW model with model efficiency (ME) reaching 0·93–0·72. Latent and sensible heat fluxes were simulated well with MEs of 0·93 and 0·87, respectively. The vegetation control on evapotranspiration was investigated by sensitivity experiments of model performance with changing leaf area index (LAI) values but constant of other variables. The results suggest that annual evapotranspiration ranged from 16 to ? 22% in response to extremes of doubled and zero LAI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
127.
针对Bursa模型在坐标系转换时没有顾及局部变形和累积误差的问题,通过对坐标转换误差进行分析,本文提出将由此产生的系统误差看作非参数信号的半参数估计,采用半参数模型对某一区域坐标进行解算,并对检核点非参数分量进行推估,与Bursa模型进行比较,结果表明半参数模型能够有效地消除系统误差。并探讨了不同确定平滑因子α的方法对坐标转换精度影响,计算结果表明,在正则矩阵R相同情况下,不同平滑因子确定方法得到的坐标转换精度有所不同,但均优于Bursa模型转换精度。  相似文献   
128.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
129.
利用可拓工程方法中的物元模型对生态地理区域系统的界线问题进行了研究,通过选取样本和指标对单指标关联函数和多指标综合关联函数进行了定量计算。在此基础上,通过专家集成确定了中国中温带半湿润、半干旱区之间的界线,弥补了单指标和定性划分的不足,有助于中国生态地理区域系统的构建。  相似文献   
130.
Garhwal Himalaya has been rocked by two major earthquakes in the span of just eight years, viz. Uttarkashi earthquake of 20th Oct, 1991 and Chamoli earthquake of 28th March, 1999. Chamoli earthquake of March 28, 1999 was recorded at 11 different stations of a strong motion array installed in the epicentral region. The maximum peak ground acceleration (353 cm/s2) was recorded at an accelerograph located at Gopeshwar. The data from eleven stations has been used for comparison with the simulated acceleration envelopes due to a model of the rupture responsible for this earthquake. For simulation of acceleration envelope the method of Midorikawa (1993) has been modified for its applicability to Himalayan region. This method has earlier been used by Joshi and Patel (1997) and Joshi (1999) for the studyof Uttarkashi earthquake of 20th Oct, 1991. The same method has been used for study of Chamoli earthquake. Layered earth crust has been introduced in place of homogeneous one in this method. The model of rupture is placed at a depth of 12 km below the Munsiari thrust for modelling Chamoli earthquake. Peak ground acceleration was calculated from simulated acceleration envelope using layered as well as homogeneous earth crust. For the rupture placed in a layered crust model peak ground acceleration of order 312 cm/s2 was simulated at Gopeshwar which is quite close to actually recorded value. The comparison of peak ground acceleration values in terms of root mean square error at eleven stations suggests that the root mean square error is reduced by inclusion of a layered earth crust in place of homogeneous earth crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号