首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   39篇
  国内免费   17篇
测绘学   23篇
大气科学   10篇
地球物理   108篇
地质学   49篇
海洋学   71篇
天文学   1篇
综合类   20篇
自然地理   196篇
  2024年   1篇
  2023年   5篇
  2022年   9篇
  2021年   16篇
  2020年   13篇
  2019年   25篇
  2018年   17篇
  2017年   20篇
  2016年   19篇
  2015年   8篇
  2014年   17篇
  2013年   26篇
  2012年   36篇
  2011年   31篇
  2010年   13篇
  2009年   30篇
  2008年   24篇
  2007年   35篇
  2006年   28篇
  2005年   22篇
  2004年   14篇
  2003年   18篇
  2002年   5篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   10篇
  1997年   1篇
  1996年   4篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1983年   3篇
排序方式: 共有478条查询结果,搜索用时 15 毫秒
41.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
42.
The water quality of the Pozuelos-Murillo lagoon system in southern Mexico was evaluated during three periods between March and October 2002, with particular emphasis on the detection of organochlorine and organophosphorous pesticide residues in water and sediments. Physicochemical and microbiological parameters of water were also measured and integrated in a water quality index (WQI). Multivariate analysis was used to regionalise the lagoon system as a function of the behaviour of all measured parameters. Solid phase micro-extraction followed by gas chromatography (SPME-GC) was used for pesticide analysis. The concentration of phosphorous was found to be higher than that of nitrogenous compounds. This, besides a deficiency in dissolved oxygen and a high organic matter concentration (as COD), reflects eutrophication processes in some areas of the system. Measured levels of faecal coliforms and oils and greases were above the limits established by Mexican law and comparable to the concentrations reported for other highly polluted systems in Mexico. Residues of DDD (2.0 microg L(-1)) in water and DDE (247 ng g(-1)) and endosulfan I (814 ng g(-1)) sediments were detected by SPME-GC. The spatial distribution of these contaminants implies major potential risks because the most polluted sites were found to be those with the highest fishing activity. Although in general the WQI is on acceptable levels (65-80%), some contamination problems are evident.  相似文献   
43.
在分析国内外主要湿地分类系统、总结有关湿地分类方法的基础上,结合双台河口保护区的实际情况,建立了适合研究区的湿地景观分类体系。利用1988年、2001年和2007年三个时相的Landsat TM/ETM+遥感影像数据,分析研究区内湿地景观类型的变化特点,以及影响研究区湿地景观格局变化的主要因素。分析结果表明:从1988年到2007年,研究区内以天然湿地为主,但天然湿地面积呈减少趋势,比重从72.68%降到56.64%;人工湿地面积比重逐渐上升,从2.93%上升到11.86%,增加量为1988年人工湿地面积的3.04倍;非湿地面积的比重从24.38%变化到31.50%。人为因素已成为研究区湿地景观格局变化的主导因素。  相似文献   
44.
This study investigated the effects of two alternative substrates(wood mulch and zeolite) on the performance of three laboratory-scale hybrid wetland systems that had identical system components and configurations.Each system consisted of a vertical flow(VF) wetland column,followed by a horizontal flow(HF) column and a vertical flow column.The substrates employed were wood mulch,gravel and zeolite,and Phragmites australis were planted in each column.The systems received synthetic wastewater,with pollutant loadings in the range of 8.5-38.0 g/(m2·d) total nitrogen(TN) and 4.0-46.4 g/(m2·d) biological oxygen demand(BOD5).Wood mulch and zeolite substrates showed higher efficiencies in terms of removing nitrogenous compounds and biodegradable organics.The supply of organic carbon from the organic mulch substrates enhanced denitrification,while adsorption of influent ammoniacal nitrogen(NH4-N) in zeolite played a major role in the removal of nitrogenous species in the wetland columns.Overall,the average percentage removals of TN and BOD5 reached >66% and >96% respectively,indicating stable performances by the hybrid wetland systems under the experimental loading ranges.Mathematical models were developed,based on the combination of Monod kinetics and continuously-stirred tank reactor(CSTR) flow patterns to describe the degradation of nitrogenous compounds.Predictions by the models closely matched the experimental data,indicating the validity and potential application of Monod kinetics in the modelling and design of treatment wetlands.  相似文献   
45.
为了阐明滨海湿地不同密度柽柳(Tamarix chinensis)林的生长动态,探索滨海湿地柽柳林的密度合理性,在黄河三角洲莱州湾南岸的山东昌邑海洋生态特别保护区内,利用标准木树干解析法,对10a生的3种密度(2400株/hm2、3 600株/hm2和4400株/hm2)的柽柳林地上生物量、林木生长动态和基径分布特征进行研究.结果表明,3种密度林分的地上生物量、树高生长量和林木基径生长过程差别较大.随着林分密度增大,林木单株生物量和基径减小,但单位面积林分生物量增加;树高、基径的速生期都出现滞后现象.3种密度林分基径分布的偏度系数(SK)差别较大;密度为3 600株/hm2林分的SK值为0.085,接近正态分布,林分密度结构和基径分布较为合理;密度为2 400株/hm2和4 400株/hm2林分的SK值分别为-0.842和0.303,偏离正态分布,林分密度结构不合理.密度为2 400株/hm2林分的峰度系数(K)为0.017,林木生长相对整齐;密度为3 600株/hm2和4 400株/hm2林分的K值相差不大;密度因素对林木分化作用较小.若不考虑10a间的林木间伐利用,该区柽柳人工造林合理的初植密度建议为3 600株/hm2(株行距约2.0 m×2.0 m).  相似文献   
46.
开展环境对河流湿地中植物的影响研究,不仅有助于了解河流湿地中植物与生态环境之间的关系,而且对河流湿地中植物的保护和恢复工作具有重要意义。根据近年来发表的环境对河流湿地中植物的影响研究成果,对河流湿地中植物的范围进行了界定,综述了与河流湿地中植物关系密切的水文情势、土壤和水电开发对其的影响,指出未来对河流湿地中植物的影响研究的方向。  相似文献   
47.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   
48.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   
49.
Biological invasion poses a huge threat to ecological security.Spartina alterniflora was introduced into China in 1979,and its arrival corresponded with negative effects on native ecosystems.To explore geographical variation of its expansion rate in coastal China,we selected 43 S.alterniflora sites from Tianjin Coastal New Area to Beihai.The area expansion rate,expansion rate paralleling and vertical to the shoreline were analysed based on Landsat images and field survey in 2015.Simple Ocean Data Assimilation(SODA)and climate data were collected to statistically analyse the influential factors of expansion rate.Results showed that significant difference of S.alterniflora area expansion rate among different latitude zones(P<0.01),increasing from 6.08%at southern(21°N–23°N)to 19.87% in Bohai Bay(37°N–39°N)along latitude gradient.There was a significant difference in expansion rate vertical to shoreline in different latitude zones(P<0.01)with the largest occurring in Bohai Bay(256m/yr,37°N–39°N),and showed an decreasing tendency gradually from north to south.No significant difference and latitudinal clines in expansion rate paralleling to shoreline were observed.Expansion rate had significant negative correlation with mean seawater temperature,the lowest seawater temperature,current zonal velocity and meridional velocity and presented a reducing trend as these biotic factors increased;however,they were not significantly correlated with the highest seawater temperature and mean seawater salinity.We identified significant correlations between expansion rate and annual mean temperature,the lowest temperature in January and annual precipitation,but there was little correlation with annual diurnal difference in temperature and the highest temperature in July.The rapid expansion rate in high-latitude China demonstrated a higher risk of potential invasion in the north;dynamic monitoring and control management should be established as soon as possible.  相似文献   
50.
Quantitative assessment of vulnerability is a core aspect of wetland vulnerability research. Taking Baiyangdian (BYD) wetlands in the North China Plain as a study area and using the ‘cause-result’ model, 23 representative indicators from natural, social, sci-tech and economic elements were selected to construct an indicator system. A weight matrix was obtained by using the entropy weight method to calculate the weight value for each indicator. Based on the membership function in the fuzzy evaluation model, the membership degrees were determined to form a fuzzy relation matrix. Finally, the ecological vulnerability was quantitatively assessed based on the comprehensive evaluation index calculated by using a composite operator to combine the entropy weight matrix with the fuzzy relation matrix. The results showed that the ecological vulnerability levels of the BYD wetlands were comprehensively evaluated as Grade II, Grade Ⅲ, Grade IV, and Grade Ⅲ in 2010, 2011-2013, 2014, and 2015-2017, respectively. The ecological vulnerability of the BYD wetlands increased from low fragility in 2010 to general fragility in 2011-2013, and to high fragility in 2014, reflecting the fact that the wetland ecological condition was degenerating from 2010 to 2014. The ecological vulnerability status then turned back into general fragility during 2015-2017, indicating that the ecological situation of the BYD wetlands was starting to improve. However, the ecological status of the BYD wetlands on the whole is relatively less optimistic. The major factors affecting the ecological vulnerability of the BYD wetlands were found to be industrial smoke and dust emission, wetland water area, ammonia nitrogen, total phosphorus, rate of industrial solid wastes disposed, GDP per capita, etc. This illustrates that it is a systematic project to regulate wetland vulnerability and to protect regional ecological security, which may offer researchers and policy-makers specific clues for concrete interventions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号