首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2788篇
  免费   493篇
  国内免费   726篇
测绘学   26篇
大气科学   32篇
地球物理   504篇
地质学   2346篇
海洋学   383篇
天文学   14篇
综合类   99篇
自然地理   603篇
  2024年   21篇
  2023年   50篇
  2022年   76篇
  2021年   92篇
  2020年   87篇
  2019年   123篇
  2018年   95篇
  2017年   90篇
  2016年   100篇
  2015年   114篇
  2014年   178篇
  2013年   231篇
  2012年   166篇
  2011年   119篇
  2010年   115篇
  2009年   194篇
  2008年   192篇
  2007年   159篇
  2006年   187篇
  2005年   139篇
  2004年   174篇
  2003年   126篇
  2002年   116篇
  2001年   97篇
  2000年   103篇
  1999年   101篇
  1998年   113篇
  1997年   109篇
  1996年   97篇
  1995年   95篇
  1994年   69篇
  1993年   48篇
  1992年   35篇
  1991年   28篇
  1990年   30篇
  1989年   18篇
  1988年   15篇
  1987年   15篇
  1986年   10篇
  1985年   21篇
  1984年   9篇
  1983年   13篇
  1982年   7篇
  1981年   18篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有4007条查询结果,搜索用时 15 毫秒
91.
潜江盐湖盆地生储盖组合特征   总被引:1,自引:0,他引:1       下载免费PDF全文
潜江盐湖盆地是我国内陆独一无二的高盐度盐湖沉积盆地。本文在分析其岩性韵律特征的基础上,探讨了潜江盐湖生储盖组合特征。研究表明,潜江凹陷潜江组是在干湿频繁交替的古气候条件下,在高盐度、强蒸发、还原—强还原水体中,由北部单向碎屑物源及凹陷周缘卤水与盐源补给形成的盐系地层,岩性组合的有序变化形成了多套生储盖组合系统,不但反映出潜江盐湖沉积的特殊性和复杂性,而且具有十分优越的成油气地质条件。  相似文献   
92.
93.
普遍认为修正后的板块构造模式仍适用于新太古代地质研究,但是早期板块构造过程与后期有明显差异,包括陆块规模、造山带类型、碰撞造山过程等。典型碰撞造山带在地史上的初次形成具有划时代的构造演化意义,涉及典型板块构造初始发生过程、最早超级大陆拼合、威尔逊旋回及板块碰撞造山过程等方面。华北中部保留一条近南北向的碰撞造山带(2 600~2 500 Ma BP),保留特征的巨型复式褶皱、不同层次推覆构造、蛇绿岩混杂带等。围绕华北中部造山带及其25亿年重大构造热事件的研究,对认识华北早期构造演化及其超大陆再造具有重要意义,也是早期板块构造研究的关键突破口之一,开展其不同地壳层次构造变形及其前陆盆地的研究,将深化早期板块边界及其造山过程的科学认识。  相似文献   
94.
通过详细的地震剖面解释,结合川西前陆盆地演化史,阐明莲花山地区地下断层及褶皱的几何形态及特征。认为区内部分断层是继承先成断层发育而来,部分断层是喜马拉雅期运动的产物;部分断层存在断层反转现象;控制盆地内沉积的主要因素是几个大断层。  相似文献   
95.
Although the principle of uniformitarianism may be applied to the Precambrian sedimentary record as a whole, certain periods of the Archaean and Palaeoproterozoic witnessed a changing pattern of prime influences controlling the depositional systems. This paper examines the major controls on sedimentation systems and environments during the Archaean and Palaeoproterozoic within the broader perspective of Earth evolution. Earth's earliest sedimentary system (4.4?-3.7 Ga) was presumably comprised of deep oceanic realms and probably influenced primarily by bolide impacts, major tsunamis, localized traction and global contour current patterns, and bathymetry. As continental crust began to form, the impact-dominated, tsunami type sedimentation gave way to wider varieties of sedimentary environments, known from the oldest sedimentary records. During early continental crustal evolution (c. 3.7–2.7 Ga), sedimentation was essentially of greenstone-type. Volcanic and volcaniclastic rocks were the major components of the greenstone belts, associated with thin carbonates, stromatolitic evaporites, BIF, pelites and quartzites and lesser synorogenic turbidites, conglomerates and sandstones. Volcanism and active tectonism (reflecting dynamic depositional settings during island arc and proto-continental nucleus formation) were the predominant factors influencing sedimentation during this phase of Earth evolution. Transgressions and regressions under the combined influence of tectonics and eustasy are reflected in fining- and coarsening-upwards successions from the proto-cratonic settings; low freeboard enabled the transgression to affect large areas of the proto-cratons. As the earliest, relatively stable craton formed, through a combination of plate tectonic and mantle-thermal processes, continents and supercontinents with the potential for supercontinental cycles started to influence sedimentation strongly. Major controls on Neoarchaean–Palaeoproterozoic sedimentation systems (2.7–1.6 Ga) were provided by a combination of superplume events and plate tectonics. Two global-scale ‘superevents’ at c. 2.7 Ga and c. 2.2–1.8 Ga were accompanied by eustatic rise concomitant with peaks in crustal growth rates, and large epeiric seas developed. The operation of first-order controls leading to development of vast chemical sedimentary platforms in these epeiric seas and concomitant palaeo-atmospheric and palaeo-oceanic evolution combined to provide a second-order control on global sedimentary systems in the Neoarchaean–Palaeoproterozoic period. The supercontinental cycle had become well established by the end of the Palaeoproterozoic, with the existence of large cratons across broad spectrums of palaeolatitude enabling erg development. The entire spectrum of sedimentary systems and environments came into existence by c. 1.8 Ga, prime influences on sedimentation and depositional system possibly remaining essentially uniform thereafter.  相似文献   
96.
沈峰 《华南地震》2006,26(2):72-79
2004年9月17日02时31分广东省阳江市发生MS 4.9级地震,造成14个镇的57个行政村共1620多间房屋(主要为老旧民房)遭受轻微破坏,受影响居民21195户,经济损失2300多万元。震后进行了地震影响场调查,绘制了这次地震的等震线分布图,并对其发震构造进行了分析探讨。  相似文献   
97.
Analyses (n = 525) of chloride (Cl), bromide (Br), nitrate as nitrogen (NO3-N), sodium (Na+), calcium (Ca2+) and potassium (K+) in stream water, tile-drain water and groundwater were conducted in an urban-agricultural watershed (10% urban/impervious, 87% agriculture) to explore potential differences in the signature of Cl originating from an urban source as compared with an agricultural source. Only during winter recharge events did measured Cl concentrations exceed the 230 mg/L chronic threshold. At base flow, nearly all surface water and tile water samples had Cl concentrations above the calculated background threshold of 18 mg/L. Mann–Whitney U tests revealed ratios of Cl to Br (p = .045), to NO3-N (p < .0001), to Ca2+ (p < .0001), and to Na+ (p < .0001) to be significantly different between urban and agricultural waters. While Cl ratios indicate that road salt was the dominant source of Cl in the watershed, potassium chloride fertilizer contributed as an important secondary source. Deicing in watersheds where urban land use is minimal had a profound impact on Cl dynamics; however, agricultural practices contributed Cl year-round, elevating stream base flow Cl concentrations above the background level.  相似文献   
98.
More than fifty heat flow measurements in Italy are examined. The values, corrected only for local influences (when present), are related to the main geological features with the following results: foreland areas, 55±19 mW m–2, foredeep areas, 45±21 mW m–2; folded regions and intermountain depressions, 76±29 mW m–2. In volcanic areas the heat flow rises to in excess of 600 mW m–2. From a tectonic point of view, these values are consistent with the hypothesis that the Apennine chain is intersected by two arcuate structures: the first from Liguria to Latium is very probably a continental arc, that is an are which occurs within a continent, and the second from Campania to Calabria is very similar from geophysical evidence to the classic island arcs.  相似文献   
99.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
100.
Basic characteristics of active tectonics of China   总被引:76,自引:8,他引:76  
Active tectonics is inferred to all the structures which have been active since the late Pleisto-cene, 100—120 ka B.P., are still active recently, and will be active in a certain time period in the future, such as active faults, active folds, active basi…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号