首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2428篇
  免费   703篇
  国内免费   1388篇
测绘学   40篇
大气科学   2252篇
地球物理   1007篇
地质学   656篇
海洋学   96篇
天文学   6篇
综合类   99篇
自然地理   363篇
  2024年   19篇
  2023年   67篇
  2022年   103篇
  2021年   149篇
  2020年   148篇
  2019年   181篇
  2018年   160篇
  2017年   170篇
  2016年   143篇
  2015年   187篇
  2014年   203篇
  2013年   393篇
  2012年   207篇
  2011年   198篇
  2010年   145篇
  2009年   197篇
  2008年   179篇
  2007年   250篇
  2006年   241篇
  2005年   208篇
  2004年   145篇
  2003年   122篇
  2002年   110篇
  2001年   80篇
  2000年   77篇
  1999年   68篇
  1998年   62篇
  1997年   51篇
  1996年   47篇
  1995年   44篇
  1994年   44篇
  1993年   25篇
  1992年   24篇
  1991年   20篇
  1990年   13篇
  1989年   7篇
  1988年   13篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4519条查询结果,搜索用时 265 毫秒
991.
Abstract

Rainfall is the most important input parameter for water resource planning and hydrological studies because flood risk assessment, rainfall harvesting and runoff estimation depend on the rainfall distribution within a region. Due to practical and economic factors, it is not possible to site rainfall stations everywhere, so representative rainfall stations are sited at specific locations. Rainfall distribution is then estimated from such stations. In this study, rainfall distribution in the southwestern region of Saudi Arabia was estimated using kriging, co-kriging and inverse distance weighted (IDW) methods. Historical records of rainfall from 47 stations for the period 1965–2010 and the altitude of these stations were used. The study shows that co-kriging is a better interpolator than the kriging and IDW methods, with a better correlation between actual and estimated monthly average rainfall for the region.  相似文献   
992.
ABSTRACT

A hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed based on the combined concept of Clark’s unit hydrograph and its spatial decomposition methods, incorporating refined spatially variable flow dynamics to implement hydrological simulation for spatially distributed rainfall–runoff flow. In Distributed-Clark, the Soil Conservation Service (SCS) curve number method is utilized to estimate spatially distributed runoff depth and a set of separated unit hydrographs is used for runoff routing to obtain a direct runoff flow hydrograph. Case studies (four watersheds in the central part of the USA) using spatially distributed (Thiessen polygon-based) rainfall data of storm events were used to evaluate the model performance. Results demonstrate relatively good fit to observed streamflow, with a Nash-Sutcliffe efficiency (ENS) of 0.84 and coefficient of determination (R2) of 0.86, as well as a better fit in comparison with outputs of spatially averaged rainfall data simulations for two models including HEC-HMS.  相似文献   
993.
Abstract

Abstract There is an urgent need for an integrated surface water and groundwater modelling tool that is suitable for southern African conditions and can be applied at various basin scales for broad strategic water resource planning purposes. The paper describes two new components (recharge and groundwater discharge) that have been added to an existing monthly time-step rainfall–runoff model that is widely used in the southern African subcontinent. The new components are relatively simple, consistent with the existing model formulation, but based on accepted groundwater flow principles and well understood groundwater parameters. The application of the revised model on two basins in southern Africa with quite different baseflow characteristics has demonstrated that the new components have a great deal of potential, even if the improvement is only to be able to simulate the groundwater baseflow component of total runoff more explicitly. More comprehensive testing and comparison of the results with existing groundwater and geohydrological data is required, while some extensions to the new components need to be considered to ensure that the model can be considered applicable to a wide range of basin and climate types.  相似文献   
994.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
995.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
996.
In this work, the multifractal properties of hourly rainfall data recorded at a location in Southern Spain have been related to the scale properties of the corresponding intensity–duration–frequency (IDF) curves. Four parametric models for the IDF curves have been fitted to the quantiles of rainfall obtained using the generalized Pareto frequency distribution function with the extreme data series obtained for the same place. The scaling of the rainfall intensity moments has been analysed, and the empirical moments scaling exponent function has been obtained. The corresponding values of q1 and γ1 have been empirical and theoretically calculated and compared with some characteristics of the different IDF models. Thus, the scaling behaviour of IDF curves has been analysed, and the best model has been selected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
997.
A neural network with two hidden layers is developed to forecast typhoon rainfall. First, the model configuration is evaluated using eight typhoon characteristics. The forecasts for two typhoons based on only the typhoon characteristics are capable of showing the trend of rainfall when a typhoon is nearby. Furthermore, the influence of spatial rainfall information on rainfall forecasting is considered for improving the model design. A semivariogram is also applied to determine the required number of nearby rain gauges whose rainfall information will be used as input to the model. With the typhoon characteristics and the spatial rainfall information as input to the model, the forecasting model can produce reasonable forecasts. It is also found that too much spatial rainfall information cannot improve the generalization ability of the model, because the inclusion of irrelevant information adds noise to the network and undermines the performance of the network. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
998.
Data on riverine fluxes are essential for calculating element cycles (carbon, nutrients, pollutants) and erosion rates from regional to global scales. At most water‐quality stations throughout the world, riverine fluxes are calculated from continuous flow data (q) and discrete concentration data (C), the latter being the main cause of sometimes large uncertainties. This article offers a comprehensive approach for predicting the magnitude of these uncertainties for water‐quality stations in medium to large basins (drainage basin area > 1000 km²) based on the commonly used discharge‐weighted method. Uncertainty levels – biases and imprecisions – for sampling intervals of 3 to 60 days are correlated first through a nomograph with a flux variability indicator, the quantity of riverine material discharged in 2% of time (M2%). In turn, M2% is estimated from the combination of a hydrological reactivity index, W2% (the cumulative flow volume discharged during the upper 2% of highest daily flow) and the truncated b50sup exponent, quantifying the concentration versus discharge relationship for the upper half of flow values (C = a q b50sup, for q > q50, where q50 is the median flow): M2% = W2% + 27.6b50sup. W2% can be calculated from continuous flow measurements, and the b50sup indicator can be calculated from infrequent sampling, which makes it possible to predict a priori the level of uncertainty at any station, for any type of riverine material either concentrated (b50sup > 0) or diluted (b50sup > 0) with flow. A large data base of daily surveys, 125 station variables of suspended particulate matter (SPM), total dissolved solids (TDS) and dissolved and particulate nutrients, was used to determine uncertainties from simulated discrete surveys and to establish relationships between indicators. Results show, for example, that for the same relatively reactive basin (W2% > 25%), calculated fluxes from monthly sampling would yield uncertainties approaching ±100% for SPM (b50sup > 1.4) fluxes and ±10% for TDS (b50sup = ?0.2). The application to the nitrate survey of the river Seine shows significant trends for the 1972–2009 records. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
999.
Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time‐step, grid‐based, conceptual rainfall–runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream‐flow events in the river system. In conjunction with opportunistic gaugings of stream‐flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream‐flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment‐wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream‐flow events makes the development of relatively complex rainfall–runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid‐based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall–runoff responses, flexibility in defining data output points and a parsimonious water‐balance–routing model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
1000.
Jia Liu  Michaela Bray  Dawei Han 《水文研究》2012,26(20):3012-3031
Accurate information of rainfall is needed for sustainable water management and more reliable flood forecasting. The advances in mesoscale numerical weather modelling and modern computing technologies make it possible to provide rainfall simulations and forecasts at increasingly higher resolutions in space and time. However, being one of the most difficult variables to be modelled, the quality of the rainfall products from the numerical weather model remains unsatisfactory for hydrological applications. In this study, the sensitivity of the Weather Research and Forecasting (WRF) model is investigated using different domain settings and various storm types to improve the model performance of rainfall simulation. Eight 24‐h storm events are selected from the Brue catchment, southwest England, with different spatial and temporal distributions of the rainfall intensity. Five domain configuration scenarios designed with gradually changing downscaling ratios are used to run the WRF model with the ECMWF 40‐year reanalysis data for the periods of the eight events. A two‐dimensional verification scheme is proposed to evaluate the amounts and distributions of simulated rainfall in both spatial and temporal dimensions. The verification scheme consists of both categorical and continuous indices for a first‐level assessment and a more quantitative evaluation of the simulated rainfall. The results reveal a general improvement of the model performance as we downscale from the outermost to the innermost domain. Moderate downscaling ratios of 1:7, 1:5 and 1:3 are found to perform better with the WRF model in giving more reasonable results than smaller ratios. For the sensitivity study on different storm types, the model shows the best performance in reproducing the storm events with spatial and temporal evenness of the observed rainfall, whereas the type of events with highly concentrated rainfall in space and time are found to be the trickiest case for WRF to handle. Finally, the efficiencies of several variability indices are verified in categorising the storm events on the basis of the two‐dimensional rainfall evenness, which could provide a more quantitative way for the event classification that facilitates further studies. It is important that similar studies with various storm events are carried out in other catchments with different geographic and climatic conditions, so that more general error patterns can be found and further improvements can be made to the rainfall products from mesoscale numerical weather models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号