首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   21篇
  国内免费   10篇
大气科学   3篇
地球物理   40篇
地质学   116篇
海洋学   13篇
天文学   5篇
综合类   1篇
自然地理   29篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   4篇
  2017年   9篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   13篇
  2012年   3篇
  2011年   7篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   15篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   9篇
  1997年   8篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
排序方式: 共有207条查询结果,搜索用时 350 毫秒
71.
72.
The Tedford subfossil locality at Lake Menindee preserves a diverse assemblage of marsupials, monotremes and placental rodents. Of the 38 mammal taxa recorded at the site, almost a third are of extinct megafauna. Some of the bones are articulated or semi-articulated and include almost complete skeletons, indicating that aeolian sediments rapidly buried the animals following death. New optical ages show the site dates to the early part of the last glacial (55,700 ± 1300 yr weighted mean age). This is close to the 51,200-39,800 yr Australia-wide extinction age for megafauna suggested by Roberts et al. [2001, Science 292:1888-1892], but like all previous researchers, we cannot conclusively determine whether humans were implicated in the deaths of the animals. Although an intrusive hearth at the site dating to 45,100 ± 1400 yr ago is the oldest evidence of human occupation of the Darling River, no artifacts were identified in situ within the sub-fossil-bearing unit. Non-anthropogenic causes, such as natural senescence or ecosystem stress due to climatic aridity, probably explain the mortality of the faunal assemblage at Lake Menindee.  相似文献   
73.
The relative weathering of a sequence of five palaesols formed in different parent materials, including bedrock of phonolitic composition, is described and assessed. The three lower palaeosols (units 3–5) are considered to be of interglacial origin. The saprolite (unit 5), in phonolite, formed prior to deposition of the lower Brunhes-age till, is considered to be as old as the Brunhes Matuyama boundary (0.73 myr). The other two palaeosols in this group (units 3 and 4), derived from loess and till, respectively, formed over middle to late Brunhes time under palaeoclimates that were wetter (and presumably warmer), and of sufficient leaching power to move clay, as well as organically complexed extractable Fe and Al. The palaeosols in unit 3 are more complex than the lower ones. Their upper and lower horizons have about the same chemical composition as the lowest two palaeosols, while the middle horizons are similar to the upper two palaeosols (units 1 and 2). Radiocarbon dates for unit 3 are considered to be too young to account for the strong weathering in the upper and lower horizons. This interpretation is supported by high D/L ratios of aspartic acid. Overlying sediments, emplaced by episodic colluvial (unit 2) and slope wash (unit 1) processes, are less weathered; the lower colluvial unit in this group was emplaced during the late stade of the last glaciation. The surface sediments were emplaced more recently during the same interval and weathered mainly during the post-glacial period. Tentative correlations with core 82PCS18 from the Canary Basin show that upper unit 3 is probably equivalent to Isotope Stage 5e, lower unit 3 to Isotope Stage 7, unit 4 to Isotope Stage 8, and unit 5 to Isotope Stage 9. Units 1 and 2 are firmly correlated with Isotope Stage 2.  相似文献   
74.
The upper 40 m of Lake Nyos are retained by a weak natural dam which, if it were to fail, would not only devastate the area hit by the 1986 gas disaster but would also cause a serious flood to surge down the Katsina Ala into Nigeria. The age of the pyroclastic cone, of which the dam is the last remnant, is therefore of great practical importance to the people of the area. If the pyroclastic cone is only a few hundred years old, as some have suggested, then it is eroding away quickly and the dam must surely fail in the very near future. If, on the other hand, it is many thousands of years old, then there is less immediate cause for concern.The age of the pyroclastic cone can be constrained in three ways:(1) Two samples of basalt, one from the dam itself and one from a lava flow which post-dates the pyroclastic cone, have both yielded K–Ar ages in excess of 100,000 years.(2) Photographic evidence indicates that there has been no detectable change (>2 m) to the width of the dam since 1958. This constrains the average erosion rate and suggests that the pyroclastic cone is at least 4000 years old.(3) Cores from sediment deposited after the level of a small lake to the northeast of Lake Nyos was raised by a debris slide from the pyroclastic cone, contain no volcanic ash. A sample from the base of this sequence has yielded a radiocarbon age of 2700 years.The Lake Nyos dam must therefore be, at the very least, a few thousand years old and although its general stability must give serious cause for concern there is no reason to suspect that the rate at which it is currently eroding away is of itself sufficient to pose an immediate threat.  相似文献   
75.
76.
77.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
78.
Growth patterns of the last ice age coral terraces at Huon Peninsula   总被引:1,自引:0,他引:1  
At Huon Peninsula, Papua New Guinea, prolific coral growth during the last-glacial was episodic and in response to a series of sea-level rises. The resultant step-like coral terraces are currently situated from 20 m up to 140 m above sea-level due to continuous tectonic uplift of the Peninsula. The sea-level rises were in response to periodic partial disintegration of Northern Hemisphere ice sheets associated with severe climate swings and occurred within decadal timescales. The relatively rapid 15 m to 35 m rise in sea-levels exposed new head-room for corals to colonize. The resulting terrace structures contain individual corals that do not appear to have grown sequentially in time and with elevation. Additionally, following the peak, sea level fell relatively slowly over several thousand years and corals grew and filled in the flanks of the terrace such that younger corals now occupy lower elevations. We have labeled these structures “pack-up” reefs. This is in contrast to coral terraces formed during major sea-level rises from glacial to interglacial or glacial to interstadial transitions where the rate of sea level rise is commensurate with coral growth rates and corals can keep up with sea-level rise by growing on top of each other in a time orderly sequence. Deriving sea-level information from pack-up terraces is difficult and is likely to be ambiguous. The periodic fluctuations in climate were associated with atmospheric radiocarbon swings that seem to have varied smoothly with time. The same corals that show a scatter in stratigraphic temporal ordering appear regularly distributed in time and with radiocarbon content attesting to the veracity of the age measurements and at the same time confirm the disordered distribution of corals in “pack-up” type reefs.  相似文献   
79.
The deglacial history of the central sector of the last British–Irish Ice Sheet is poorly constrained, particularly along major ice‐stream flow paths. The Tyne Gap Palaeo‐Ice Stream (TGIS) was a major fast‐flow conduit of the British–Irish Ice Sheet during the last glaciation. We reconstruct the pattern and constrain the timing of retreat of this ice stream using cosmogenic radionuclide (10Be) dating of exposed bedrock surfaces, radiocarbon dating of lake cores and geomorphological mapping of deglacial features. Four of the five 10Be samples produced minimum ages between 17.8 and 16.5 ka. These were supplemented by a basal radiocarbon date of 15.7 ± 0.1 cal ka BP, in a core recovered from Talkin Tarn in the Brampton Kame Belt. Our new geochronology indicates progressive retreat of the TGIS from 18.7 to 17.1 ka, and becoming ice free before 16.4–15.7 ka. Initial retreat and decoupling of the TGIS from the North Sea Lobe is recorded by a prominent moraine 10–15 km inland of the present‐day coast. This constrains the damming of Glacial Lake Wear to a period before ∼18.7–17.1 ka in the area deglaciated by the contraction of the TGIS. We suggest that retreat of the TGIS was part of a regional collapse of ice‐dispersal centres between 18 and 16 ka.
  相似文献   
80.
There is a growing interest in the rescue and reuse of data from past studies (so-called legacy data). Data loss is alarming, especially where natural archives are under threat, such as peat deposits. Here we develop a workflow for reuse of legacy radiocarbon dates in peatland studies, including a rigorous quality assessment that can be tailored to specific research questions and study regions. A penalty is assigned to each date based on criteria that consider taphonomic quality (i.e., sample provenance) and dating quality (i.e., sample material and method used). The weights of quality criteria may be adjusted based on the research focus, and resulting confidence levels may be used in further analyses to ensure robustness of conclusions. We apply the proposed approach to a case study of a (former) peat landscape in the Netherlands, aiming to reconstruct the timing of peat initiation spatially. Our search yielded 313 radiocarbon dates from the 1950s to 2019. Based on the quality assessment, the dates—of highly diverse quality—were assigned to four confidence levels. Results indicate that peat initiation for the study area first peaked in the Late Glacial (~14,000 cal years BP), dropped during the Boreal (~9,500 cal years BP) and showed a second peak in the Subboreal (~4,500 cal years BP). We tentatively conclude that the earliest peak was mostly driven by climate (Bølling–Allerød interstadial), whereas the second was probably the result of Holocene sea level rise and related groundwater level rise in combination with climatic conditions (hypsithermal). Our study highlights the potential of legacy data for palaeogeographic reconstructions, as it is cost-efficient and provides access to information no longer available in the field. However, data retrieval may be challenging, and reuse of data requires that basic information on location, elevation, stratigraphy, sample and laboratory analysis are documented irrespective of the original research aims.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号