首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   170篇
  国内免费   259篇
测绘学   2篇
地球物理   62篇
地质学   845篇
海洋学   93篇
天文学   2篇
综合类   20篇
自然地理   50篇
  2024年   14篇
  2023年   24篇
  2022年   53篇
  2021年   64篇
  2020年   68篇
  2019年   62篇
  2018年   57篇
  2017年   51篇
  2016年   55篇
  2015年   51篇
  2014年   57篇
  2013年   65篇
  2012年   70篇
  2011年   57篇
  2010年   42篇
  2009年   39篇
  2008年   39篇
  2007年   62篇
  2006年   25篇
  2005年   16篇
  2004年   11篇
  2003年   24篇
  2002年   11篇
  2001年   12篇
  2000年   13篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有1074条查询结果,搜索用时 62 毫秒
911.
912.
913.
Inter‐laboratory comparison of laser ablation ICP‐MS and SIMS U‐Pb dating of synthetic detrital zircon samples provides an insight into the state‐of‐the art of sedimentary provenance studies. Here, we report results obtained from ten laboratories that routinely perform this type of work. The achieved level of bias was mostly within ± 2% relative to the ID‐TIMS U‐Pb ages of zircons in the detrital sample, and the variation is likely to be attributed to variable Pb/U elemental fractionation due to zircon matrix differences between the samples and the reference materials used for standardisation. It has been determined that ~ 5% age difference between adjacent age peaks is currently at the limit of what can be routinely resolved by the in situ dating of detrital zircon samples. Precision of individual zircon age determination mostly reflects the data reduction and procedures of measurement uncertainty propagation, and it is largely independent of the instrumentation, analytical technique and reference samples used for standardisation. All laboratories showed a bias towards selection of larger zircon grains for analysis. The experiment confirms the previously published estimates of the minimum number of grains that have to be analysed in order to detect minor zircon age populations in detrital samples.  相似文献   
914.
Major- and trace-element and U–Pb analyses of detrital zircons were performed on metavolcano sedimentary sequences and igneous rocks from the Ceará Central Domain (CCD) in the Borborema Province of northeastern Brazil. No significant geochemical differences were found between these rocks, which were possibly initially deposited as parts of a very large metavolcano-sedimentary sequence. Weathering in the source area was moderate, and the sediments were deposited as both sands and clays. The sources of the sediments were likely mixtures of felsic and intermediate rocks deposited predominantly in an active-margin setting with minor contributions of both continental arc and passive margin components. Three main source ages were identified: Palaeoproterozoic (~2.2 Ga), for which potential sources include the Palaeoproterozoic Madalena-Algodões Suite; early Neoproterozoic (~850 Ma), related to felsic volcanic magmatism due to continental rifting, initial phases of the Santa Quitéria Magmatic Arc, or magmatic arc systems on the margins of the Palaeoproterozoic crust; and late Neoproterozoic (~650 Ma), associated with extensive granite generation and migmatization events accompanying Santa Quitéria Arc activity. Deposition of the CCD volcanosedimentary rocks occurred shortly before regional, collision-type metamorphism accompanying the amalgamation of the São Francisco-Congo Cratons (~ 620–630 Ma).  相似文献   
915.
New stratigraphic and petrographic data and zircon U–Pb geochronology from sandstones and volcanic rocks in the states of Queretaro and Guanajuato in central Mexico indicate an important provenance change between Late Triassic and latest Jurassic–Early Cretaceous time. The Upper Triassic El Chilar Complex consists of pervasively deformed, deep-marine olistostromes, and debris-flow deposits of arkosic and subarkosic composition. Detrital-zircon populations range from latest Palaeoproterozoic (1.65 Ga) to Middle Triassic (240 Ma), all predating the depositional age of the strata. The detrital-zircon populations are similar to those previously reported from turbidites of the Potosi fan complex of north-central Mexico and interpreted as derived from Grenville and Pan-African (Maya block) basement and Permo-Triassic arc of continental Mexico directly to the east of the basin. A single sample with a dominant Proterozoic population at ~1.65–1.30 Ga was likely derived either from the Rio Negro-Juruena province of the Amazonian craton or from a local source in the Huiznopala Gneiss, and indicates that El Chilar strata were likely deposited in the proximal part of a submarine-fan system separate from the Potosi fan.

Uppermost Jurassic–Lower Cretaceous strata of the San Juan de la Rosa Formation unconformably overlie the El Chilar Complex and likewise consist of deep-marine olistostromes, slump deposits, debris-flow deposits, and proximal fan-channel fills, but are volcanogenic litharenites with abundant felsic and vitric volcanic lithic fragments. Detrital-zircon populations are dominated by Early Cretaceous grains (150–132 Ma) with no known sources in eastern Mexico. Abundant young grains indicate a maximum depositional age of ~134 Ma (Valanginian–Hauterivian). The San Juan de la Rosa Formation is overlain by deepwater carbonates with interbedded siliciclastic beds of the Peña Azul Formation, which contains detrital-zircon ages as young as ~130 Ma, indicating possible equivalence with similar strata of the Las Trancas Formation, with a maximum depositional age of ~127 Ma and lying to the east in the Zimapan Basin, now part of the Sierra Madre Oriental fold and thrust belt. Decreasing content of volcaniclastic strata eastward indicates a volcanic source to the west. Upper Cretaceous marine strata in the Mineral de Pozos area to the northwest in the state of Guanajuato contain litharenites with a maximum depositional age near 92 Ma, and are thus part of a younger depositional system.

Composition and detrital-zircon content of the Upper Triassic and Lower Cretaceous successions in central Mexico indicates an important shift from Gondwanan continental sediment sources in the Triassic to western volcanic sources, probably on the edge of the newly opened Arperos basin, by the end of the Jurassic. This important sediment-dispersal change records the break-up of Pangea and concomitant development of arc-related sedimentary basins on the western edge of Mexico.  相似文献   
916.
《International Geology Review》2012,54(17):2118-2142
ABSTRACT

The Late Cretaceous-Paleogene Mexican foreland basin (MFB), defined herein, represents the southern continuation of the late Mesozoic Cordilleran foreland basin. Sandstone petrography, new detrital-zircon (DZ) U-Pb geochronology, and paleocurrent data indicate that much of the sedimentary fill of the basin was derived from an active Late Cretaceous-Paleogene magmatic arc, termed here the Mexican Cordilleran arc, on the western continental margin of Mexico. The oldest known strata of the proximal foreland basin in the Mesa Central consist of Cenomanian-Turonian turbidites. Sampled sandstones are compositional volcanic litharenites with abundant neovolcanic grains and a dominant, approximately syndepositional DZ age group ranging ~98–92 Ma that records a major magmatic event in the Mexican Cordilleran arc. Santonian-Campanian strata in the distal MFB consist of carbonate pelagites with abundant interbedded tuffs and tuffaceous sandstones. Represented by the Caracol and San Felipe formations deposited in the forebulge and back-bulge depozones, respectively, these strata form an arcuate outcrop belt ~700 km in length. DZ ages ranging ~85–74 Ma in the arc-derived tuffaceous strata record a second prominent magmatic event.

Two principal transport mechanisms delivered volcanogenic sediment to the MFB from multiple, simultaneously active arc sources during Late Cretaceous time: (1) Cenomanian-Turonian east-directed transverse fluvial systems transported volcanic-lithic sand rich in young zircon grains; and (2) airborne ash clouds transported Santonian-Campanian zircon grains to the distal foreland basin in prevailing Late Cretaceous northwesterly winds. Axial transport of sediment derived from active arc sources, Proterozoic basement and derivative sedimentary rocks in northwestern Mexico, in addition to transverse transport from the thrust orogen itself, represents a younger sediment-routing system, modified by advance of the foreland fold-thrust belt, to the Maastrichtian-Paleogene foreland of northeastern Mexico.  相似文献   
917.
《International Geology Review》2012,54(14):1806-1824
In this article, we present in situ U–Pb and Lu–Hf isotope data for Upper Triassic detritus in the Sichuan region of northwestern South China, which was a foreland basin during the Late Triassic. The aim is to determine the provenance of sediments in the foreland basin and to constrain the evolution of the surrounding mountain belts. U–Pb age data for the Late Triassic detrital zircons generally show populations at 2.4–2.6 Ga, 1.7–1.9 Ga, 710–860 Ma, 410–460 Ma, and 210–300 Ma. By fitting the zircon data into the tectonic, sedimentologic, and palaeographic framework, we propose that the north Yangtze Block and South Qinling–Dabie Orogen were the important source areas of sediments in the northern part of the foreland basin, whereas the Longmen Shan thrust-fold belt was the main source region for detritus in other parts of the foreland basin. The South Qinling–Dabie Orogen could also have served as a physical barrier to block most detritus shed from the southern North China Block into the foreland basin during the sedimentation of the Xujiahe Formation. Our results also reveal that part of the flysch from the eastern margin of the Songpan–Ganzi region had been displaced into the Longmen Shan thrust-fold belt before the deposition of the foreland basin sediments. In addition, the Lu-Hf data indicate that Phanerozoic igneous rocks in central China show insignificant formation of the juvenile crust.  相似文献   
918.
ABSTRACT

The Late Mesozoic Jiaolai basin preserves sediment source information that can help elucidate the tectonic history of East Shandong, China. The terrestrial Wangshi and Laiyang Groups are major components of the basin succession, but are not well studied in terms of their provenance and role in basin evolution. The Early Cretaceous Laiyang Group consists primarily of fluvial and lacustrine facies siltstones and sandstones, whereas the Late Cretaceous Wangshi Group consists of reddish fluvial siltstones and sandstones with interbedded conglomerates. This study reports detrital zircon age distributions from eight sandstones collected from the two groups. Age distributions exhibited four major populations of Palaeoproterozoic (2.5–2.4 Ga), Palaeoproterozoic (1.9–1.8 Ga), Neoproterozoic (850–700 Ma), and Jurassic to Early Cretaceous (171–107 Ma) ages. We interpret a maximum depositional age of 107 Ma for the Wangshi Group and a depositional age of 121–120 Ma for the upper Laiyang Group. Age distributions indicate that the Sulu orogenic belt of the East Shandong complex served as the primary source area. Detrital zircon age data also indicate major changes in the types of source material contributed to the Laiyang and Wangshi groups. Based on these shifts, we propose a four-stage model for Early Cretaceous evolution of the Jiaolai basin. In this model, subduction of the Pacific plate and associated transform motion on the Tan-Lu fault influenced the transition from a transpressional to an extensional tectonic setting.  相似文献   
919.
ABSTRACT

The basal conglomerates (‘Linsishan Conglomerate’, LC, herein) are exposed discontinuously along the northern part of the Sulu Orogenic Belt (SOB) and the southern part of the Jiaobei Terrane. Studying these conglomerates can offer key constrains for the formation age of the Jiaolai Basin and improve our understanding of the uplift and erosional histories of the SOB and Jiaobei Terrane, which are still in great controversy. In Huangyadi section, the LC is characterized as debris-flow deposits, channel deposits, and sheet-flow deposits. However, in Shanjiao section, the LC is changed to sheet-flow and sieve deposits, as well as debris-flow and channel deposits. These deposit characteristics indicate an unstable tectonic setting during initial opening stage of the basin. Based on the data of conglomerate component, palaeocurrent, and debris zircons ages, it can be inferred that the sediments in the Laiyang region were sourced from the Jiaobei Terrane and Northern Sulu Orogenic Belt (NSOB), and the sediments in the Zhucheng and Wulian regions were derived from the Jiaobei Terrane and the Southern Sulu Orogenic Belt (SSOB). Besides, the sediments in the Haiyang and Jimo regions were provided by the NSOB and SSOB, respectively. The significant SHRIMP U–Pb ages of a tuff developing in the LC has been obtained, indicating that 149 ± 2.5 Ma is the oldest age constraint for the Jiaolai Basin. In addition, our result shows that the Latest Jurassic (ca. 149 Ma) may be a critical time; before this time, the Jiaobei Terrane and the SOB experienced a rapid uplift with minimal uplift velocity (~0.9 km/Ma); since then, the Orogen began to collapse and a series of basins formed rapidly in its core, which indicate the tectonic stress regime of the Dabie-Sulu Orogen varied from compressional stress to tensile stress.  相似文献   
920.
The Western Irish Namurian Basin (WINB) preserves classic examples of basin floor sequences through to slope deposits and deltaic cyclothems. Despite over 50 years of research into the WINB, its sediment provenance remains highly contested. Sedimentological arguments, including palaeocurrent vectors and palaeoslope indicators have been invoked to propose a sediment source from the NW or the west (i.e. from within Laurentia). These same indicators have been subsequently reinterpreted to reflect a southern provenance. It is not clear from sedimentological arguments alone which interpretation more accurately reflects the infilling of the WINB. Regional‐scale constraints on WINB provenance may be obtained with detrital zircon U–Pb geochronology. U–Pb LA‐ICP‐MS detrital zircon analysis was undertaken on samples from three sandstone units at different stratigraphic levels within the WINB siliciclastic sedimentary fill (Ross Formation, Tullig Sandstone, Doonlicky Sandstone). The samples are dominated by 500–700 Ma zircons, which can be correlated with Cadomian–Avalonian orogenic activity within terranes to the south of the WINB (Avalonia/Ganderia, Armorica and Iberia). In contrast, Eastern Laurentia, to the north of the WINB, was devoid of orogenic activity at this time. WINB samples also yield age populations younger than 500 Ma, and older than 700 Ma. These are not diagnostic of a particular source terrane and thus could be derived from terranes north and/or south of the WINB. WINB detrital zircon age spectra can be reconciled by an Avalonian or combined Avalonian–Laurentian provenance for WINB sedimentary strata. Further research is required in order to distinguish between these two possibilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号