首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   83篇
  国内免费   105篇
测绘学   33篇
大气科学   83篇
地球物理   66篇
地质学   169篇
海洋学   220篇
天文学   6篇
综合类   51篇
自然地理   280篇
  2024年   2篇
  2023年   12篇
  2022年   19篇
  2021年   30篇
  2020年   33篇
  2019年   31篇
  2018年   34篇
  2017年   32篇
  2016年   33篇
  2015年   36篇
  2014年   38篇
  2013年   43篇
  2012年   44篇
  2011年   44篇
  2010年   35篇
  2009年   31篇
  2008年   29篇
  2007年   39篇
  2006年   30篇
  2005年   32篇
  2004年   35篇
  2003年   24篇
  2002年   24篇
  2001年   26篇
  2000年   22篇
  1999年   20篇
  1998年   22篇
  1997年   16篇
  1996年   15篇
  1995年   13篇
  1994年   10篇
  1993年   13篇
  1992年   6篇
  1991年   7篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1971年   1篇
排序方式: 共有908条查询结果,搜索用时 328 毫秒
11.
The accumulation of phytoplankton biomass in recurring summer dinoflagellate blooms of Chesapeake Bay is accompanied by large pools of dissolved organic matter (DOM). Two fractions of the DOM, free amino acids (DFAA) and monosaccharides (MONO), were measured at 3 h intervals in mixed species dinoflagellate blooms (Katodinium rotundatum, Gymnodinium spp.) and related to productivity, biomass and photoperiod. Peak chlorophyll levels for the three blooms were 28, 65 and 938 μg1−1. In general, DFAA and MONO concentrations increased with increasing biomass of bloom-forming species, reaching 203 and 844 μg1−1. MONO appeared to accumulate during the day while there was no consistent pattern for DFAA. The accumulations of DFAA and MONO in blooms indicate that bloom production might stimulate microheterotrophy, thereby enhancing carbon and nutrient cycling in bloom-impacted regions.  相似文献   
12.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
13.
14.
Chesapeake Bay is a large and productive estuary that has received close scrutiny in recent years because of indications that its water quality and biota have been damaged by man's activities. Data on primary production for the estuary as a whole, however, are surprisingly sparse. We describe here the distribution of photosynthetic carbon assimilation by phytoplankton in Chesapeake Bay, and relate productivity patterns to hydrographic characteristics of the estuary. Between March 1982 and April 1983, a series of four cruises was conducted on Chesapeake Bay, and two cruises on the urbanized Delaware Bay for comparison. The upper Chesapeake and Delaware were highly turbid with high concentrations of suspended particulate matter and dissolved inorganic nutrients. Low chlorophyll concentrations were usually found in these areas of high turbidity, despite the abundance of nutrients, suggesting light limitation. Application of Wofsy's (1983) model of phytoplanton growth confirmed this suggestion. Chlorophyll and productivity maxima usually occurred seaward of the turbidity maxima where light penetration increased and suffient nutrients were present to support active phytoplankton growth. Further seaward of the chlorophyll maxima in the Chesapeake, the photic zone depth increased, concentrations of nutrients decreased, and phytoplankton biomass decreased, suggesting that nutrient availability, rather than light, controlled phytoplankton growth in the lower portion of the estuary. In contrast to the Chesapeake, Delaware Bay was more turbid, had generally higher nutrient concentrations, and was lower in phytoplankton productivity. The chlorophyll maxima and region of rapid phytoplankton growth occurred further toward the lower estuary and shelf regions in Delaware Bay because the high turbidity extended further seaward. Nutrients were never depleted at the shelf end of the estuary sufficiently to retard phytoplankton growth. Photosynthesis-irradiance (P-I) curves from simulated in situ and constant intensity incubations showed a strong correlation of the light-limited slope (aB) with the light-saturated rate ( ) on each cruise. Spatial variations in corresponded to patterns of phytoplankton abundance, as did integral production (PP) and carbon-based growth rates (μC, μm), and photosynthetic parameters varied significantly with temperature.  相似文献   
15.
山东半岛东部诸岛水域叶绿素—a含量和初级生产力   总被引:1,自引:0,他引:1  
据1990.11-1991年8月期间,山东半岛东部诸岛水域调查资料,分析了该水域叶绿素-a含量的时空分布和初级生产力的分布与变化,此分布与该水域的温度和营养盐水含量密切相关。叶绿素-a含量的季节变化分三种类型,年变幅为0.11-12.81mg/m^3,年平均值为1.17mg/m^3。初级生产力夏季〉春季〉秋季〉冬季,年变幅为23.00-791.60mg.c/m^2.d年平均为152.0mg.c/m  相似文献   
16.
本文运用德尔菲方法对水库鱼产力综合评价中指标权重的合理分配问题作了专家调查,并采用灰色统计法对调查结果进行归纳处理,从而确立了一个水库鱼产力影响因素诸层次各方面的评价指标权重体系,可供今后的评价工作参考使用。  相似文献   
17.
INTRODUCTIONBystudyingchlorophyllandprimaryproductivityinocean ,eitherinthebig scaleorinthesmallscale ,theproductivitydistributionandvariationofmarineorganicmaterialinthetempo ralandspatialcanbeunderstood .Theseaareas ,situatinginthewesterntropicalPacific…  相似文献   
18.
本文通过对山东省38座代表性大、中型水库总氮(TN)、总磷(TP)、化学耗氧量、硬度及电导率(λ)五种主要水化因子连续两年(1989~1990)的调查与研究,探讨了水化因子与水库鱼产力的关系。用反映鲢、鳙生长状况的综合生长指数(GI)作为水库鱼产力的指标。它与水化因子相关分析表明,总磷是山东省38座水库鱼产力的主要影响因子。提出GI与总磷、总氮及电导率等水化因子的逐步回归方程关系非常显著。证明利用水化因子作为水库鱼产力的评价指标是可行的。并指出:同一水库的相同水化因子存在年间差异,其主要原因在于降雨量和水库进水量的不同,鉴于此.同一水库鱼产力也存在年间差异。  相似文献   
19.
19802000北京市农业土地生产性的变动分析   总被引:1,自引:0,他引:1  
王鹏飞  鲁奇  傅桦  李娟 《地理研究》2006,25(4):719-729
根据1980、1990、2000年的统计资料和实地走访观察,本文分析了北京市乡镇一级的粮食作物、蔬菜作物和果品作物的分布格局及农业土地生产性近20年的变化。研究认为:1980年北京农业生产分布格局与土地生产性为比较典型的杜能模式;随着农业经营的多样化,1990年和2000年北京农业土地生产性呈现出多样的分布格局;北京粮食作物、蔬菜作物、果品作物的分布格局及农业土地生产性近20年的变化与此阶段的农业生产政策、农业以外的社会经济活动变化有较强的关联性;对北京以上问题的研究为验证杜能、辛克利亚、布莱昂特城市周边农业地域研究经典理论的演变提供了实证案例。  相似文献   
20.
水稻灌区节水灌溉的尺度效应   总被引:13,自引:8,他引:13       下载免费PDF全文
探讨了节水灌溉尺度问题,指出产生节水灌溉尺度现象的原因是由于灌溉过程中回归水的重复利用.结合漳河灌区的实际,讨论了水稻种植区在不同尺度下的水平衡要素及其在节水尺度效应中的作用;说明随尺度的增大,水平衡过程变得复杂化,节水尺度效应现象也更突出.利用漳河灌区田间试验数据和灌区长系列的历史资料,分别从田间、中等、灌溉干渠和灌区共四个尺度,定量地分析了水稻节水灌溉对水分生产率以及水分利用率的影响.结果表明,节水灌溉技术的采用不仅可以提高田间尺度的灌溉水分生产率,也促进了漳河灌区灌溉水分生产率的整体上升.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号