首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3134篇
  免费   272篇
  国内免费   313篇
测绘学   450篇
大气科学   321篇
地球物理   495篇
地质学   768篇
海洋学   683篇
天文学   34篇
综合类   170篇
自然地理   798篇
  2024年   9篇
  2023年   27篇
  2022年   95篇
  2021年   112篇
  2020年   121篇
  2019年   135篇
  2018年   86篇
  2017年   134篇
  2016年   113篇
  2015年   106篇
  2014年   141篇
  2013年   221篇
  2012年   145篇
  2011年   144篇
  2010年   122篇
  2009年   182篇
  2008年   213篇
  2007年   180篇
  2006年   192篇
  2005年   159篇
  2004年   135篇
  2003年   106篇
  2002年   128篇
  2001年   111篇
  2000年   92篇
  1999年   77篇
  1998年   71篇
  1997年   56篇
  1996年   47篇
  1995年   37篇
  1994年   36篇
  1993年   35篇
  1992年   21篇
  1991年   15篇
  1990年   14篇
  1989年   15篇
  1988年   12篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1984年   12篇
  1983年   10篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1978年   3篇
  1976年   2篇
排序方式: 共有3719条查询结果,搜索用时 15 毫秒
41.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   
42.
Japanese fisheries production in the Japan/East Sea between 1958 and 2003 increased to their peak (1.76 million tons) in the late 1980s and decreased abruptly with the collapse of Japanese sardine. Catch results for 58 fisheries and various environmental time-series data sets and community indices, including mean trophic level (MTL) and Simpson’s diversity index (DI), were used to investigate the impacts of fishing and climate changes on the structure of the fish community in the Tsushima warm current (TWC) region of the Japan/East Sea. The long-term trend in fisheries production was largely dependent on the Japanese sardine that, as a single species, contributed up to 60% of the total production in the Japanese waters of the Japan/East Sea during the late 1980s. Excluding Japanese sardine, production of the small pelagic species was higher during 1960s and 1990s but lower during 1970s and 1980s. This variation pattern generally corresponds with the trend in water temperature, warmer before early 1960s and after 1990s but colder during 1970s and 1980s. The warm-water, large predatory fishes and cold water demersal species show opposite responses to the water temperature in the TWC region, indicating the significant impact of oceanic conditions on fisheries production of the Japan/East Sea. Declines in demersal fishes and invertebrates during 1970s and 1980s suggested some impact of fishing. MTL and DI show a similar variation pattern: higher during 1960s and 1990s but lower during 1970s and 1980s. In particular, the sharp decline during the 1980s resulted from the abundant sardine catches, suggesting that dominant species have a large effect on the structure of the fish community in the Japan/East Sea. Principal component analysis for 58 time-series data sets of fisheries catches suggested that the fish community varied on inter-annual to inter-decadal scales; the abrupt changes that occurred in the mid-1970s and late 1980s seemed to correspond closely with the climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.  相似文献   
43.
44.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
45.
This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.  相似文献   
46.
In order to estimate primary production from ocean color satellite data using the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997), we propose a two-phytoplankton community model. This model is based on the two assumptions that changes in chlorophyll concentration result from changes of large-sized phytoplankton abundance, and chlorophyll specific productivity of phytoplankton tends to be inversely proportional to phytoplankton size. Based on the analysis of primary production data, P opt B , which was one parameter in the VGPM, was modeled as a function of sea surface temperature and sea surface chlorophyll concentration. The two-phytoplankton community model incorporated into the VGPM gave good estimates in a relatively high productive area. Size-fractionated primary production was estimated by the two-phytoplankton community model, and P opt B of small-sized phytoplankton was 4.5 times that of large-sized phytoplankton. This result fell into the ranges observed during field studies.  相似文献   
47.
Abstract. Respiration in Holothuria tubulosa was investigated in individuals from the Posidonia oceanica meadow off Lacco Ameno (Ischia Island, Italy). Respiratory rates increase with increasing body weight and increasing sea water temperature. Oxygen consumption of an average individual (7g dw body wall) ranges from 0.409 (14 °C) to 1.300 (26 °C) mg O2· h-1. Data on population density, mean size of individuals, and annual sea water temperature variations allow an assessment of holothuroid production. Values of 45.65 and 13.75 kJ · m-2· y-1 were calculated for shallow (3 to 10 m) and deep (25 to 33 m) areas of the Posidonia meadow, respectively. Holothuroid production shows a bathymetric pattern similar to primary production of the Posidonia -epiphytes complex and the production of Posidonia litter.  相似文献   
48.
Inverse analysis is increasingly used in ecosystem modelling to objectively reconstruct a large number of unknown flows or interactions from a small number of observations. This type of analysis may be useful in relating observed regime shifts in ecosystem structure to underlying processes. Inversions of ecosystem flow networks currently use a constrained least-squares solution which at the same time minimizes the squared norm (the sum of squares) of the reconstructed flows. This minimum norm (MN) inversion is thought to be a parsimonious solution to the ecosystem flow inverse problem, but it may well not reflect how ecosystems are organised. It has been proposed instead that ecosystems evolve to maximize energy/mass flows or that they maximize the information content of the network weighted by ecosystem flows (ascendancy). We used simulated inverse experiments, where inverse analyses are applied to simulations of flow networks, to explore objective functions different than the MN generally used. We could not compute inverse solutions that maximize ascendancy because the objective function is unbounded. We could calculate inversions that maximize flows; however, these generally overestimated the simulated flows, even though the simulations were designed to maximize flows. It appears that the ecosystem flow inverse problem is too under-determined (too few data relative to the number of unknowns) to allow the use of these maximizing goal functions. We introduce a new minimization that simultaneously minimizes the squared flows and the squared differences between flows. This smoothing minimization makes the inverse flows as even as possible and it helps with some technical issues with MN inversions. The simulated inverse experiments indicated that this smoothed norm (SM) is the most robust in comparative analyses of contrasting ecosystem states, such as those that can be associated with regime shifts. Like the MN inversion, the SM inversion has no ecological basis. However, it is a conservative norm that is less likely to produce false differences between the dynamics of regimes.  相似文献   
49.
低分子肝素作为一种抗血栓的多糖药物在临床中已应用了二十多年 ,目前已作为外科预防血栓形成药物 ,并在治疗急性静脉栓塞紊乱方面取代了未分级肝素。因肝素的来源和制备的方法不同使低分子肝素的精细结构不同 ,低分子肝素结构的复杂性 ,使得各产品的生物活性 ,例如抗蛋白酶活性不同 ,从而导致其临床使用的标准不同。该文将对低分子肝素的制备方法及其结构和抗蛋白酶活性的差异进行报导  相似文献   
50.
Dynamics and Variability of Terra Nova Bay Polynya   总被引:1,自引:0,他引:1  
Abstract. We present a process study on the dynamics and variability of the Terra Nova Bay polynya in the western sector of the Ross Sea. The air-sea heat exchange is known to be particularly large in polynya during the winter, when differences between air and sea temperatures are large. We apply a 1-D model (Pease, 1987; Van Woert, 1999a, 1999b), which is modified in the latent heat parameterisation in order to account for time-dependent relative humidity and cloud coverage. Furthermore, the Ice Collection Depth is correlated linearly with a variable wind speed. The model is forced with two different meteorological data sets: the operational analysis of the European Center for Medium Range Weather Forecasts atmospheric data set and the meteorological parameters measured by an Automatic Weather Station located on the coast of Terra Nova Bay. The results are compared in terms of polynya extension, ice, and High Salinity Shelf Water production. According to the two different wind velocities, the results obtained from the different data sets clearly differ. Qualitatively, however, the results are in good agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号