首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4757篇
  免费   2001篇
  国内免费   255篇
测绘学   36篇
大气科学   6篇
地球物理   3664篇
地质学   2302篇
海洋学   300篇
天文学   341篇
综合类   11篇
自然地理   353篇
  2024年   2篇
  2023年   4篇
  2022年   3篇
  2021年   67篇
  2020年   81篇
  2019年   264篇
  2018年   469篇
  2017年   479篇
  2016年   522篇
  2015年   461篇
  2014年   468篇
  2013年   773篇
  2012年   460篇
  2011年   422篇
  2010年   350篇
  2009年   262篇
  2008年   331篇
  2007年   227篇
  2006年   227篇
  2005年   235篇
  2004年   188篇
  2003年   185篇
  2002年   155篇
  2001年   141篇
  2000年   149篇
  1999年   41篇
  1998年   12篇
  1997年   12篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
排序方式: 共有7013条查询结果,搜索用时 15 毫秒
51.
It is often infeasible to carry out coupled analyses of multiply‐supported secondary systems for earthquake excitations. ‘Approximate’ decoupled analyses are then resorted to, unless the response errors due to those are significantly high. This study proposes a decoupling criterion to identify such cases where these errors are likely to be larger than an acceptable level. The proposed criterion is based on the errors in the primary system response due to decoupling and has been obtained by assuming (i) the input excitation to be an ideal white noise process, (ii) cross‐modal correlation to be negligible, and (iii) the combined system to be classically damped. It uses the modal properties of the undamped combined system, and therefore, a perturbation approach has been formulated to determine the combined system properties in case of light to moderately heavy secondary systems. A numerical study has been carried out to illustrate the accuracy achieved with the proposed perturbation formulation. The proposed decoupling criterion has been validated with the help of two example primary‐secondary systems and four example excitation processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
52.
Most current methods of design for concrete structures under earthquake loads rely on highly idealized ‘equivalent’ static representations of the seismic loads and linear‐elastic methods of structural analysis. With the continuing development of non‐linear methods of dynamic analysis for the overload behaviour and collapse of complete concrete structures, a more direct and more accurate design procedure becomes possible which considers conditions at system collapse. This paper describes an evaluation procedure that uses non‐linear dynamic collapse–load analysis together with global safety coefficients. A back‐calibration procedure for evaluating the global safety coefficients is also described. The aim of this paper is to open up discussion of alternative methods of design with improved accuracy which are necessary to move towards a direct collapse–load method of design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
53.
In order to examine the applicability of ground‐shaking mapping techniques to a near‐field earthquake, a peak ground velocity map of the 1995 Hyogo‐ken Nanbu, Japan earthquake computed from seismic zoning methods that consider the effects of geological conditions is compared with the actual observed intensity map. When computing the ground‐shaking map, the site amplification at each site is calculated in terms of the average shear‐wave velocity of the ground estimated from the corresponding geomorphological conditions. This map shows a relatively good agreement with the observed intensity map. However, the computations provide smaller values for certain disastrous areas of the earthquake, where the effects on ground motion of a deep, irregular underground structure have been reported. The effect of such structures on site response is examined implementing 2D FEM analyses, thereby being also incorporated into the method. Results considering the effect of the irregular underground structure show better agreement with the observed intensity map. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
54.
The main landforms within the glacially scoured Precambrian rocks of the Swedish west coast are closely connected to the principal structural pattern and have lately been explained as mainly a result of etch processes, probably during the Mesozoic and with a possible second period of etching during the Neogene. To explore the effect of multiple glacial erosion on the rock surfaces, an island with two different lithologies and with striae from different directions was selected for a detailed study, focusing on the shape of roches moutonnées. Air‐photo interpretation of bedrock lineaments and roches moutonnées combined with detailed field mapping and striae measurements are used to interpret the structural and lithological control on the resulting shape. The study reveals a significant difference in shape between roches moutonnées in augen‐granite and orthogneiss. Low elongated and streamlined roches moutonnées occur in the gneiss area, striated by a Late Weichselian ice flow from the NE. This ice flow is subparallel with both the local dominant trend of topographically well‐expressed joints and the schistosity of the gneiss. Frequently, there are no signs of quarrying on the lee‐sides of the gneiss roches moutonnées and hence they resemble the shape of whalebacks, or ruwares, as typically associated with the exposed basal weathering surface found in tropical areas. The granite roches moutonnées were formed by an older ice flow from the ESE, which closely followed the etched WNW–ESE joint system of the granite. Late Weichselian ice flow from the NE caused only minor changes of the landforms. On the contrary, marks of the early ESE ice flow are poorly preserved in the gneiss area, where it probably never had any large effect as the flow was perpendicular to both schistosity and structures and, accordingly, also to the pre‐glacial relief. The study demonstrates that coincidence between ice flow direction and pre‐glacially etched structures is most likely to determine the effects of glacial erosion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
55.
进一步搞好离任经济责任审计工作   总被引:1,自引:0,他引:1  
离任经济责任审计,越来越受到各级领导的重视。搞好离任经济责任审计,确保审计质量,值得我们深入思索和关注。做好离任经济责任审计工作,要明确审计范围,把握审计重点,评价客观公正;对任期较长的责任人进行任期期间经济责任任审计;及时下达审计决定,保证审计工作的时效性。  相似文献   
56.
The five MTMD models, with natural frequencies being uniformly distributed around their mean frequency, have been recently presented by the first author. They are shown to have the near‐zero optimum average damping ratio (more precisely, for a given mass ratio there is an upper limit on the total number, beyond which the near‐zero optimum average damping ratio occurs). In this paper, the eight new MTMD models (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1~US‐MTMD3, UD‐MTMD1 and UD‐MTMD2), with the system parameters (mass, stiffness and damping coefficient) being, respectively, uniformly distributed around their average values, have been, for the first time here, proposed to seek for the MTMD models without the near‐zero optimum average damping ratio. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the eight MTMD models (i.e. through the implementation of Min.Min.Max.DMF), the optimum parameters and values of Min.Min.Max.DMF for these eight MTMD models are investigated to evaluate and compare their control performance. The optimum parameters include the optimum mass spacing, stiffness spacing, damping coefficient spacing, frequency spacing, average damping ratio and tuning frequency ratio. The six MTMD models without the near‐zero optimum average damping ratio (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1, US‐MTMD2 and UD‐MTMD2) are found through extensive numerical analyses. Likewise, the optimum UM‐MTMD3 offers the higher effectiveness and robustness and requires the smaller damping with respect to the rest of the MTMD models in reducing the responses of structures subjected to earthquakes. Additionally, it is interesting to note, by comparing the optimum UM‐MTMD3 with the optimum MTMD‐1 recently investigated by the first author, that the effectiveness and robustness for the optimum UM‐MTMD3 is almost identical to that for the optimum MTMD‐1 (without inclusion of the optimum MTMD‐1 with the near‐zero optimum average damping ratio). Recognizing these performance benefits, it is preferable to employ the optimum UM‐MTMD3 or the optimum MTMD‐1 without the near‐zero optimum average damping ratio, when installing the MTMD for the suppression of undesirable oscillations of structures under earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
57.
A Bayesian inference approach is introduced to identify soil degradation behaviours at four downhole array sites. The approach of inference is based on a parametric time‐varying infinite impulse response filter model. The approach is shown to be adaptive to the changes of filter parameters and noise amplitudes. Four sites, including the Lotung (Taiwan), Chiba (Japan), Garner Valley (California), and Treasure Island (California) sites with downhole seismic arrays are analysed. Our results show two major types of soil degradation behaviour: the well‐known strain‐dependent softening, and reduction in stiffness that is not instantaneously recoverable. It is also found that both types of soil degradation are more pronounced in sandy soils than in clayey soils. The mechanism for the second type of soil degradation is not yet clear to the authors and suggested to be further studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
58.
This article documents the analytical study and feasibility of placing a tuned mass damper in the form of a limber rooftop moment frame atop relatively stiff structures to reduce seismic acceleration response. Six existing structures were analytically studied using a suite of time history and response spectra records. The analyses indicate that adding mass in conjunction with a limber frame results in an increase in the fundamental period of each structure. The fundamental period increase generally results in a decrease in seismic acceleration response for the same time history and response spectra records. Owing to the limber nature of the rooftop frames, non‐linear analysis methods were required to evaluate the stability of the rooftop tuned mass damper frame. The results indicate the addition of a rooftop tuned mass damper frame reduces the seismic acceleration response for most cases although acceleration response can increase if the rooftop frame is not tuned to accommodate the specific structure's dynamic behaviour and localized soil conditions. Appropriate design of the rooftop tuned mass damper frame can result in decreased seismic acceleration response. This translates to safer structures if used as a retrofit measure or a more economical design if used for new construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
59.
Shear‐wall dominant multistorey reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code (International Conference of Building Officials, Whittier, CA, 1997) and the Turkish Seismic Code (Specification for Structures to be Built in Disaster Areas, Ankara, Turkey, 1998) present limited information for their design criteria. In this study, consistency of equations in those seismic codes related to their dynamic properties are investigated and it is observed that the given empirical equations for prediction of fundamental periods of this specific type of structures yield inaccurate results. For that reason, a total of 80 different building configurations were analysed by using three‐dimensional finite‐element modelling and a set of new empirical equations was proposed. The results of the analyses demonstrate that given formulas including new parameters provide accurate predictions for the broad range of different architectural configurations, roof heights and shear‐wall distributions, and may be used as an efficient tool for the implicit design of these structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
60.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号