首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2952篇
  免费   425篇
  国内免费   837篇
测绘学   172篇
大气科学   388篇
地球物理   300篇
地质学   1005篇
海洋学   1618篇
天文学   29篇
综合类   254篇
自然地理   448篇
  2024年   13篇
  2023年   51篇
  2022年   126篇
  2021年   131篇
  2020年   139篇
  2019年   155篇
  2018年   139篇
  2017年   135篇
  2016年   131篇
  2015年   159篇
  2014年   191篇
  2013年   219篇
  2012年   196篇
  2011年   173篇
  2010年   137篇
  2009年   160篇
  2008年   185篇
  2007年   203篇
  2006年   181篇
  2005年   185篇
  2004年   167篇
  2003年   140篇
  2002年   122篇
  2001年   112篇
  2000年   105篇
  1999年   87篇
  1998年   80篇
  1997年   55篇
  1996年   45篇
  1995年   54篇
  1994年   39篇
  1993年   41篇
  1992年   25篇
  1991年   27篇
  1990年   19篇
  1989年   15篇
  1988年   11篇
  1987年   7篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1971年   3篇
排序方式: 共有4214条查询结果,搜索用时 218 毫秒
41.
Abstract. In situ investigations of growth and production in a stand of Posidonia oceanica (L.) DELILE at a depth of 4 m at Ischia (Gulf of Naples) were carried out over two growing seasons. Posidonia starts to grow in August and an average bundle produces ten leaves in increasing time intervals until May. Growth curves for the leaves are given. Maximum leaf standing crop is in May with 1300 g dry weight per m-2, leaf area index at this time reaches 22 m2 m-2. Leaf net productivity is highest in March with 12 g dry weight per m2 per day. Annual leaf production is estimated as 3110 g dry weight per m2, “underground” production as 115 g dry weight per m2. About half the leaf production is exported from the system. Adaptive strategies of the growth and production pattern are discussed.  相似文献   
42.
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were:

1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES);

2. To verify that platform performance requirements are met with respect to Jason-1 requirements;

3. To verify that payload instruments performance requirements evaluated at instrument level are met;

4. To assess the performance of the Jason-1 Ground System.

This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   
43.
Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddies and image itself, it is sometimes difficult to successfully detect ocean eddies using these methods. A mnltifractal filtering technology is proposed for extraction of ocean eddies and demonstrated using NASA MODIS, SeaWiFS and NOAA satellite data set in the typical area, such as ocean west boundary current. Results showed that the new method has a superior performance over the traditional methods.  相似文献   
44.
The accumulation of phytoplankton biomass in recurring summer dinoflagellate blooms of Chesapeake Bay is accompanied by large pools of dissolved organic matter (DOM). Two fractions of the DOM, free amino acids (DFAA) and monosaccharides (MONO), were measured at 3 h intervals in mixed species dinoflagellate blooms (Katodinium rotundatum, Gymnodinium spp.) and related to productivity, biomass and photoperiod. Peak chlorophyll levels for the three blooms were 28, 65 and 938 μg1−1. In general, DFAA and MONO concentrations increased with increasing biomass of bloom-forming species, reaching 203 and 844 μg1−1. MONO appeared to accumulate during the day while there was no consistent pattern for DFAA. The accumulations of DFAA and MONO in blooms indicate that bloom production might stimulate microheterotrophy, thereby enhancing carbon and nutrient cycling in bloom-impacted regions.  相似文献   
45.
46.
SeaWiFS航空模拟器(SAS)是专门为在水面之上测量水体表观光学参数的现场设备。文章在介绍SAS现场测量以及数据处理基本方法的基础上,分析了2002年黄海试验SAS的应用效果,并与剖面法测量数据进行了比对。  相似文献   
47.
针对海上矿石运输,介绍了一种完成定量任务并能使投资费用最少为目标的最优船队组建方法,同时对易变参数进行了灵敏度分析,使决策更加科学化  相似文献   
48.
In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed Exp_Tide and Exp_Control,respectively. After introducing tidal forcing, the transient climate response(TCR) decreases from 2.32 K to 1.90 K,and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in Exp_Tide. Approximately 21% more heat is stored in the ocean in Exp_Tide(1.10×10~(24) J) than in Exp_Control(0.91×10~(24) J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation(AMOC). The initial transport at mid-and high latitudes and the decline in the AMOC observed in Exp_Tide are both larger than those observed in Exp_Control. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in Exp_Tide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.  相似文献   
49.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
50.
This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号