首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3420篇
  免费   543篇
  国内免费   385篇
测绘学   161篇
大气科学   57篇
地球物理   1406篇
地质学   1168篇
海洋学   420篇
天文学   17篇
综合类   149篇
自然地理   970篇
  2024年   16篇
  2023年   30篇
  2022年   63篇
  2021年   125篇
  2020年   156篇
  2019年   154篇
  2018年   128篇
  2017年   145篇
  2016年   135篇
  2015年   141篇
  2014年   149篇
  2013年   236篇
  2012年   141篇
  2011年   183篇
  2010年   149篇
  2009年   206篇
  2008年   199篇
  2007年   210篇
  2006年   229篇
  2005年   188篇
  2004年   167篇
  2003年   165篇
  2002年   133篇
  2001年   143篇
  2000年   111篇
  1999年   105篇
  1998年   88篇
  1997年   82篇
  1996年   61篇
  1995年   48篇
  1994年   61篇
  1993年   34篇
  1992年   25篇
  1991年   27篇
  1990年   14篇
  1989年   14篇
  1988年   10篇
  1987年   19篇
  1986年   10篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有4348条查询结果,搜索用时 15 毫秒
951.
In Gombe, Bauchi State, Nigeria, gullies are sculptured in the Upper Cretaceous Pindiga Formation and Gombe Sandstones. The former is a sequence of marine shales with limestone interbeds, the later is a sequence of sandstone, siltstone, and shales. Both formations have ironstone cappings. The degree of gully development, the gravity of attendant soil wastage, and environmental hazards are all related to the rock types in which the gully have formed. Hence, the most grievous situations are posed by gullies in the shale/clay member of the Gombe Sandstone and in the shale/clay/limestone units of the Pindiga Formation. An undercut and collapse model is put forward to explain gully initiation and propagation in Gombe.  相似文献   
952.
Soil erosion by water in abandoned dry terraces is one of the most important environmental problems in semiarid areas, enhancing biological degradation and reducing possible resources that can be obtained. However, little is known about the effects of the types of lithology and soil properties on the early stages of soil erosion. Therefore, the main aim of this research was to assess the effect of different lithologies (marls, limestones, and metamorphic—phyllites, schists, and greywackes—materials) and soil properties on the early stages of soil erosion by water in abandoned dry terraces, compared with similar terraces still in agricultural use. Soil analyses (texture, aggregate stability, and bulk density) and 22 rainfall simulations were carried out under dry conditions. During the experiments, local inclination, vegetation and stone cover, total organic matter, and antecedent soil moisture were also quantified. The results showed that the highest soil loss (41.41 g/m2 in cultivated plots and 17.05 g/m2 in the abandoned plots) and runoff (3.79 L/m2 in the abandoned plot) occurred on marl substrata. Marls also showed the shallowest infiltration front (9 cm) and lowest infiltration rate (4.3 cm/min). Limestones and, especially, metamorphic areas, showed a lower degree of soil erosion, higher infiltration rates, and deeper infiltration fronts.  相似文献   
953.
In broad terms, fluvial systems can be considered as comprising two basic geomorphologic features, a channel and its floodplain (overbank), each of which may accumulate sediment or undergo erosion. The sedimentary relationships between channels and floodplains, the resultant sedimentary architecture and the form of the dependent landscape may all be considered in terms of the relative rates of channel and floodplain aggradation and/or erosion. Using this approach, the Herbert River in north Queensland can be divided into seven ‘fluvial fields’. By considering the likely migration directions of field boundaries in the lower floodplain we conclude that, contrary to many sequence‐stratigraphic models, lowering sea‐level would drive a general aggradation of the system on the Great Barrier Reef shelf, whereas a sea‐level rise would cause further incision of the modern coastal plain.  相似文献   
954.
Abstract

Abstract Since the end of the 1950s, suspended matter measurements have been carried out in the streams and rivers of Cameroon. Despite the fact that these are often point measurements, they provide a framework for a global approach towards studying the regimes of suspended sediment transport in these rivers. The objective here is to assess the intensity of sediment transport and to determine the principal factors which influence it, according to the main climatic units. The influence of human activities is pointed out. It appears that steep slopes, population density, soil cultivation and cattle grazing are the essential factors. The sediment load in these rivers is increasing with latitude with 20–40 g m-3 at the Equator, 80–100 g m-3 in the transition zones and 150–160 g m-3 in the dry tropical zones. The choice of drainage basin size for the characterisation of the rate of effective erosion is indispensable. In fact, in large drainage basins (5 × 104 km2), there is an integration of heterogeneous geomorphological, phytogeographical, pedological and anthropogenic characteristics into average characteristics which do not show the influence of local conditions on sediment transport.  相似文献   
955.
This paper assesses variations in quantitative reconstructions of late Holocene relative sea‐level (RSL) change arising from using modern diatom datasets from different spatial scales, applied to case studies from Alaska. We investigate the implications of model choice in transfer functions using local‐, sub‐regional‐ and regional‐scale modern training sets, and produce recommendations on the creation and selection of modern datasets for reconstructing RSL change over Holocene timescales in tidal marsh environments comparable with those in Alaska. We show that regional modern training sets perform best in terms of providing fossil samples with good modern analogues, and in producing reconstructions that most closely match observations, where these are available. Local training sets are frequently insufficient to provide fossil samples with good modern analogues and may over‐estimate the precision of RSL reconstructions. This is particularly apparent when reconstructing RSL change for periods beyond the last century. For reconstructing RSL change we recommend using regional modern training sets enhanced by local samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
956.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   
957.
To better understand the variation of water quality in the Mekong River, sampling and measurement were scheduled twice a week for about 3 years at Vientiane, followed by basic statistical analysis of the observed data. The frequent measurement revealed detailed characteristics of the water quality variation, which had not been detected by monthly observation in the previous studies. The variation in total ionic content was considered to be governed by dilution of the amount of water. Increases in turbidity could be attributed to physical effects including surface soil erosion and bed material resuspension at the time of discharge increase. Nitrogen concentrations were stably low during the low flow period and abruptly increased in May. After the annual maximum in late May, the nitrate concentration steadily decreased regardless of the remarkable rise in the discharge from mid‐July, whereas the ammonium concentration remained at a similar level until October. It was considered that the first small discernable runoff after the long dry season flushed the accumulated nitrogen in the surface soil and mobilized the nitrogen in the riverbed. The variation in phosphorus concentrations was different from that in nitrogen concentrations. During the high flow period, continual dilutions at discharge peaks and occasional large additions of phosphorus by surface runoff were suggested. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
958.
Abstract

Proper agricultural land management strategies improve soil structural properties, thereby reducing soil loss by water erosion. This study was conducted to estimate soil losses from plots of different agricultural land management using the Water Erosion Prediction Project (WEPP) (95.7) model. The study took place in a semiarid region in Kenya. The mean annual rainfall was 694 mm. The WEPP (95.7) model was initially used to estimate total sediment loading from the catchment into a reservoir. The estimate was about 2871 t corresponding to an average sedimentation rate of 1063 t km?2 year?1, which was about 76% of the measured total sediment inflow into the reservoir. Soil losses were estimated within 10 plots on the catchment of different sizes and slopes with the following treatments: conventional tillage (hand hoeing) with maize and soybean intercropping (HOCOBE); conservation tillage (disc plough) with maize and soybean intercropping (COBEAN); conservation tillage with only maize cultivation (CNTCORN); and conservation tillage with only soybean cultivation (CNTBEAN). The soil loss reduction of COBEAN, CNTCORN and CNTBEAN relative to HOCOBE ranged between 27–47%, 16–29% and 12–25%, respectively, depending on the size and slope of the plot. In general, conservation tillage reduced soil loss relative to conventional tillage. However, with conservation tillage, the single cropping system resulted in greater soil loss than the intercropping system. In the case of single cropping with conservation tillage, the soil loss reduction for maize ranged between 4 and 9%, relative to soybean. Overall, the study showed that there would be a significant reduction of soil losses from plots if conservation tillage with an intercropping system (maize and soybean) were to be adopted on agricultural lands in semiarid regions.  相似文献   
959.
Assessing hydrologically driven erosion at regional scales from a process‐based perspective presents a significant challenge. Most regional‐scale erosion assessments are based upon a simple steady‐state hydrology foundation. For this study, the sediment transport version of the physics‐based Integrated Hydrology Model (InHM), excited by synthetically generated rainfall, was employed to assess long‐term hydrologically driven erosion for a regional‐scale island boundary‐value problem. The spatiotemporal dynamics of runoff generation, erosion, and deposition are illustrated through saturation, water depth, velocity, and sediment concentration results. The simulations demonstrate that process‐based assessment for concept development is both feasible and tractable at regional spatial and human time scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
960.
Beaufort's Dyke is a submarine depression located in the North Channel of the Irish Sea. With a maximum depth of 312 m, the dyke is one of the deepest areas within the European continental shelf. Integration and interpretation of 450 km of sparker seismic data and full‐coverage bathymetric data derived from multi‐beam echo sounder surveys allow for the investigation of the formation processes of Beaufort's Dyke and the evolution of geomorphological features within it. The dyke, formed by composite subglacial processes dominated by subglacial meltwater discharge, is interpreted as a tunnel valley. The regional isolation of Beaufort's Dyke may be explained by the bounding of the North Channel by the bedrock masses of Ireland and Scotland, coupled with the exploitation of structural weakness along a fault plane and presence of halite in the eroded substrate enhancing the erosive potential of the overlying glacier. Beaufort's Dyke has probably been maintained as an open feature by strong rectilinear tidal currents. The morphology of lunate sediment waves and a large parabolic bedform towards the south of the dyke contradict the observed dominant S–N mean hydrodynamic flow recorded within the North Channel, suggesting an alternative hydrodynamic regime either within the dyke or during bedform creation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号