首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2650篇
  免费   288篇
  国内免费   389篇
测绘学   101篇
大气科学   237篇
地球物理   704篇
地质学   870篇
海洋学   322篇
天文学   684篇
综合类   58篇
自然地理   351篇
  2024年   14篇
  2023年   13篇
  2022年   36篇
  2021年   67篇
  2020年   90篇
  2019年   92篇
  2018年   74篇
  2017年   70篇
  2016年   72篇
  2015年   82篇
  2014年   66篇
  2013年   151篇
  2012年   95篇
  2011年   168篇
  2010年   163篇
  2009年   197篇
  2008年   232篇
  2007年   199篇
  2006年   160篇
  2005年   164篇
  2004年   148篇
  2003年   111篇
  2002年   107篇
  2001年   84篇
  2000年   101篇
  1999年   96篇
  1998年   97篇
  1997年   58篇
  1996年   48篇
  1995年   50篇
  1994年   35篇
  1993年   26篇
  1992年   22篇
  1991年   18篇
  1990年   13篇
  1989年   21篇
  1988年   20篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1954年   1篇
排序方式: 共有3327条查询结果,搜索用时 15 毫秒
761.
The origin of the martian gullies has been much debated since their discovery by the Mars Orbiter Camera (MOC, Malin, M.C., Edgett, K.S. [2000]. Science 288, 2330-2335). Several previous studies have looked at slope gradients in and around gullies, but none have used Digital Elevation Models (DEMs) from the High Resolution Imaging Science Experiment (HiRISE, McEwen, A.S., and 14 colleagues [2007]. J. Geophys. Res. 112 (E05), E0505S02), which has a pixel scale down to 25 cm/pixel. We use five 1 m/post HiRISE DEMs to measure gully apex slopes, the local channel gradient at the upslope extent of the gully debris apron, which marks a shift from erosion to deposition. The apex slope provides information about whether a flow was likely a typical dry granular flow (begins depositing on slopes ∼21°) or fluidized by some extra mechanism (depositing on shallower slopes). We find that 72% of the 75 gully fans studied were likely emplaced by fluidized flows. Relatively old gullies appear more likely to have hosted fluidized flows than relatively fresh gullies. This suggests a time and location dependent fluidizing agent, possibly liquid water produced in a different climate as previously proposed. Our results do not provide evidence for water-rich flows in gullies today.  相似文献   
762.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   
763.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   
764.
P.C. Thomas 《Icarus》2010,208(1):395-401
The Cassini spacecraft has provided data on over twenty satellites orbiting Saturn. In this study we update the shape measurements derived from imaging data of nearly all the observed regular satellites (those with low eccentricities and inclinations) and briefly discuss some of the implications of their properties. In particular, the improved data show that Rhea’s shape is hydrostatic.  相似文献   
765.
Motivated by radar and near-infrared data indicating that Titan’s polar lakes are extremely smooth, we consider the conditions under which a lake surface will be ruffled by wind to form capillary waves. We evaluate laboratory data on wind generation and derive, without scaling for surface tension effects, a threshold for pure methane/ethane of ∼0.5-1 m/s. However, we compute the physical properties of predicted Titan lake compositions using the National Institute for Standards Technology (NIST) code and note that dissolved amounts of C3 and C4 compounds are likely to make Titan lakes much more viscous than pure ethane or methane, even without allowing for suspended particulates which would increase the viscosity further. Wind tunnel experiments show a strong dependence of capillary wave growth on liquid viscosity, and this effect may explain the apparent absence so far of waves, contrary to prior expectations that generation of gravity waves by wind should be easy on Titan. On the other hand, we note that winds over Titan lakes predicted with the TitanWRF Global Circulation Model indicate radar observations so far have in any case been when winds have been low (∼0.5-0.7 m/s), possibly below the wave generation threshold, while peak winds during summer may reach 1-2 m/s. Thus observations of Titan’s northern lakes during the coming years by the Cassini Solstice mission offer the highest probability of observing wind-roughening of lake surfaces, while observations of Ontario Lacus in the south will likely continue to show it to be flat and smooth.  相似文献   
766.
We present results of a campaign to map much of the Moon’s near side using the 12.6-cm radar transmitter at Arecibo Observatory and receivers at the Green Bank Telescope. These data have a single-look spatial resolution of about 40 m, with final maps averaged to an 80-m, four-look product to reduce image speckle. Focused processing is used to obtain this high spatial resolution over the entire region illuminated by the Arecibo beam. The transmitted signal is circularly polarized, and we receive reflections in both senses of circular polarization; measurements of receiver thermal noise during periods with no lunar echoes allow well-calibrated estimates of the circular polarization ratio (CPR) and the four-element Stokes vector. Radiometric calibration to values of the backscatter coefficient is ongoing. Radar backscatter data for the Moon provide information on regolith dielectric and physical properties, with particular sensitivity to ilmenite content and surface or buried rocks with diameter of about one-tenth the radar wavelength and larger.Average 12.6-cm circular polarization ratio (CPR) values for low- to moderate-TiO2 mare basalt deposits are similar to those of rough terrestrial lava flows. We attribute these high values to abundant few-centimeter diameter rocks from small impacts and a significant component of subsurface volume scattering. An outflow deposit, inferred to be impact melt, from Glushko crater has CPR values near unity at 12.6-cm and 70-cm wavelengths and thus a very rugged near-surface structure at the decimeter to meter scale. This deposit does not show radar-brightness variations consistent with levees or channels, and appears to nearly overtop a massif, suggesting very rapid emplacement. Deposits of similar morphology and/or radar brightness are noted for craters such as Pythagoras, Rutherfurd, Theophilus, and Aristillus. Images of the north pole show that, despite recording the deposition of Orientale material, Byrd and Peary craters do not have dense patterns of radar-bright ejecta from small craters on their floors. Such patterns in Amundsen crater, near the south pole, were interpreted as diagnostic of abundant impact melt, so the fraction of Orientale-derived melt in the north polar smooth plains, 1000 km farther from the basin center, is inferred to be much lower.  相似文献   
767.
Priyanka Sharma  Shane Byrne 《Icarus》2010,209(2):723-737
Titan’s north polar hydrocarbon lakes offer a unique opportunity to indirectly characterize the statistical properties of Titan’s landscape. The complexity of a shoreline can be related to the complexity of the landscape it is embedded in through fractal theory. We mapped the shorelines of 290 of the north polar titanian lakes in the Cassini synthetic aperture radar dataset. Out of these, we used a subset of 190 lake shorelines for our analysis. The fractal dimensions of the shorelines were calculated via two methods: the divider/ruler method and the box-counting method, at length scales of (1-10) km and found to average 1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan’s topography (β) from theoretical and empirical relations is found to be ?2, which is lower than the values obtained from the global topography of the Earth or Venus. Some of the shorelines exhibit multi-fractal behavior (different fractal dimensions at different scales), which we interpret to signify a transition from one set of dominant surface processes to another. We did not observe any spatial variation in the fractal dimension with latitude; however we do report significant spatial variation of the fractal dimension with longitude. A systematic difference between the dimensions of orthogonal sections of lake shorelines is also noted, which signifies possible anisotropy in Titan’s topography. The topographic information thus gleaned can be used to constrain landscape evolution modeling to infer the dominant surface processes that sculpt the landscape of Titan.  相似文献   
768.
There are ∼300 features on the Asteroid 433 Eros that morphologically resemble ponds (flat-floored and sharply embaying the bounding depression in which they sit). Because boulders on Eros are apparently eroding in place and because ponds with associated boulders tend to be larger than ponds without blocks, we propose that ponds form from thermally disaggregated and seismically flattened boulder material, under the assumption that repeated day/night cycling causes material fatigue that leads to erosion of the boulders. Results from a simple boulder emplacement/thermal erosion model with boulders emplaced in a few discrete events (i.e., large impacts) match well the observed size distribution. Under this scenario, the subtle color differences of ponds (somewhat bluer than the rest of the surface) might be due to some combination of less space-weathered material and density stratification of silicate-rich chondrules and more metal-rich matrix from a disaggregated boulder. Volume estimates of ponds derived from NEAR Laser Rangefinder profiles are consistent with what can be supplied by boulders. Ponds are also observed to be concentrated in regions of low slope and high elevation, which suggests the presence of a less mobile regolith and thus a contrast in the resistance to seismic shaking between the pond material and the material that makes up the bounding depression. Future tests include shake-table experiments and temperature cycling (fatigue) of ordinary chondrites to test the thermal erosion mechanism.  相似文献   
769.
<正>This study examined spatial variations in the concentration,grain size and heavy mineral assemblages on Cedar Beach(Lake Erie,Canada).Magnetic studies of heavy mineral-enriched,dark-reddish sands present on the beach showed that magnetite(~150μm) is the dominant magnetic mineral.Surficial magnetic susceptibility values defined three zones:a lakeward region close to the water line(Zone 1),the upper swash zone(Zone 2) and the region landwards of the upper swash zone (Zone 3).Zone 2 showed the highest bulk and mass susceptibility(κ,χ) and the highest mass percentage of smaller grain-size(250μm) fractions in the bulk sand sample.Susceptibility(i.e.κandχ) values decreased and grain size coarsened from Zone 2 lakewards(into Zone 1) and landwards (into Zone 3),and correlated with the distribution of the heavy mineral assemblage,most probably reflecting preferential separation of large,less dense particles by waves and currents both along and across the beach.The eroded western section of Cedar Beach showed much higher concentrations of heavy minerals including magnetite,and finer sand grain sizes than the accreting eastern section, suggesting that magnetic techniques could be used as a rapid,cost-effective way of examining erosion along sensitive coastline areas.  相似文献   
770.
The hydrothermal system of Saint-Gervais-les-Bains, France is located in a south western low-elevation point of the Aiguilles Rouges crystalline Massif. The crystalline rocks are not directly outcropping in the studied area but certainly exist beyond 300 m depth. Uprising waters are pumped from two different aquifers below the Quaternary deposits of the Bon Nant Valley. In the Lower Trias-Permian aquifer crossed by De Mey boreholes (27–36 °C), the ascending Na-SO4 and high-Cl thermal water from the basement (4.8 g/L) is mostly mixed by a Ca-SO4 and low-Cl cold water circulating in the autochthonous cover of the Aiguilles Rouges Basement. The origin of the saline thermal water probably results from infiltration and circulation in the basement until it reaches deep thrust faults with leaching of residual brines or fluid inclusions at depth (Cl/Br molar ratio lower than 655). The dissolution of Triassic halite (Cl/Br > 1000) is not possible at Saint-Gervais-les-Bains because the Triassic cold waters have a low-Cl concentration (< 20 mg/L). Water–rock interactions occur during the upflow via north–south strike-slip faults in the basement and later on in the autochthonous cover. For the De Mey Est borehole, gypsum dissolution is occurring with cationic exchanges involving Na, as well as low-temperature Mg dissolution from dolomite in the Triassic formations. The aquifer of imbricated structures (Upper-Middle Trias) crossed by the Lépinay well (39 °C) contains thermal waters, which are strongly mixed with a low-Cl water, where gypsum dissolution also occurs. The infiltration area for the thermal end-member is in the range 1700–2100 m, close to the Lavey-les-Bains hydrothermal system corresponding to the Aiguilles Rouges Massif. For the Ca-SO4 and low-Cl end-member, the infiltration area is lower (1100–1300 m) showing circulation from the Mont Joly Massif. The geothermometry method indicates a reservoir temperature of probably up to 65 °C but not exceeding 100 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号