首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   16篇
  国内免费   13篇
测绘学   4篇
大气科学   15篇
地球物理   19篇
地质学   63篇
海洋学   8篇
综合类   10篇
自然地理   76篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   13篇
  2013年   6篇
  2012年   12篇
  2011年   11篇
  2010年   5篇
  2009年   14篇
  2008年   4篇
  2007年   16篇
  2006年   20篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有195条查询结果,搜索用时 953 毫秒
51.
近40年甘南草原生命地带偏移趋势及干湿变化   总被引:1,自引:0,他引:1       下载免费PDF全文
利用Holdridge生命地带系统对1971—2010年甘南草原的Holdridge生命地带偏移趋势及干湿变化进行分析,发现甘南草原目前仍属于青藏高原高寒植被地区的亚高山高寒草甸生命地带,但由于甘南草原生物温度明显升高,甘南草原南部和北部降水量呈现不同的变化趋势,位于青藏高原边坡地带的甘南草原的Holdridge生命地带距平均中心的偏移趋势逐年增大,甘南草原生态系统的稳定性在减弱;甘南草原潜在蒸散率以0.02/10 a~0.03/10 a趋势上升,其中以玛曲上升最明显,达0.03/10 a;20世纪90年代后,甘南草原呈明显的暖干化趋势,其中以位于南部的碌曲、玛曲变化最为明显,碌曲已由极湿润区转变为湿润区;玛曲有从极湿润区向湿润区过渡的趋势。影响甘南草原潜在蒸散率上升的主要气候因子是温度,其次为降水和空气湿度,温度上升是甘南草原暖干化的主要原因。  相似文献   
52.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   
53.
This paper evaluated the impacts of mounds created by the plateau pika (Ochotona curzoniae) on the vege- tation composition, structure, and species diversity of an alpine Kobresia steppe meadow in Nagqu County, Tibet Autonomous Region, China. Based on mound height or the depth of erosion pit, we defined five stages of erosion and compared the floristic features of communities at these stages with those in undisturbed sites. In the study area, the mounds and pits covered up to 7% of the total area. Lancea tibetica, Lamiophlomis rotata, and Potentilla bifurca were the dominant species in erosion pits, and Kobresia pygmaea, the dominant species in undisturbed sites, became a com- panion species in eroded areas. In the process of erosion, the original vegetation was covered by soil ejected by the pika, then the mounds were gradually eroded by wind and rain, and finally erosion pits formed. The vegetation coverage in- creased with increasing erosion stages but remained significantly lower than that in undisturbed sites. Improved coverage eventually reduced soil erosion, and pit depth eventually stabilized at around 20cm. Aboveground biomass increased with increasing erosion stage, but the proportion of low-quality forage reached more than 94%. The richness index and Shannon-Wiener index increased significantly with increasing erosion stage, but the richness index in mound and pit areas was significantly lower than that in undisturbed sites.  相似文献   
54.
Potentilla fruticosa scrub,Kobresia humilis meadow andKobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2 emission rates from various treatments were 672.09±152.37 mgm-2h-1 for FC (grass treatment); 425.41± 191.99 mgm-2h-1 for FJ (grass exclusion treatment); 280.36±174.83 mgm-2h-1 for FL (grass and roots exclusion treatment); 838.95±237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48±205.67 mgm-2h-1 for GC (grass treatment); 268.97±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore,Kobresia humilis meadow,Potentilla fruticosa scrub meadow andKobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, inKobresia humilis meadow, heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, inPotentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from GG; 49% and 51% from GC. In addition, root respiration fromKobresia humilis meadow approximated 145 mgCO2m-2h-1, contributed 34% to soil respiration. During the experiment period,Kobresia humilis meadow andPotentilla fruticosa scrub meadow had a net carbon fixation of 111.11 gm-2 and 243.89 gm-2, respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission fromKobresia tibetica meadow, and more detailed analyses should be done in further research.  相似文献   
55.
Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2 emission rates from various treatments were 672.09±152.37 mgm^-2h^-1 for FC (grass treatment); 425.41±191.99 mgm^-2h^-1 for FJ (grass exclusion treatment); 280.36±174.83 mgm^-2h^-1 for FL (grass and roots exclusion treatment); 838.95±237.02 mgm^-2h^-1 for GG (scrub+grass treatment); 528.48±205.67 mgm^-2h^-1 for GC (grass treatment); 268.97±99.72 mgm^-2h^-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm^-2h^-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia hurnilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from GG; 49% and 51% from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m^-2h^-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 gm^-2 and 243.89 gm^-2 respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture maybe the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research  相似文献   
56.
陈军雄  张宏泽柏 《山地学报》2006,24(B10):282-287
高寒草甸氮素循环过程中的物理过程、化学过程和生物过程与土壤、植物的发生、发育紧密联系,因此对物理、化学、生物三个不同过程高寒草甸氮素循环的研究现状进行了分析。  相似文献   
57.
ThebackgroundfeaturesofnaturalenvironmentandtheharnesingpaternforthespreadofsalinelandintheSongnenPlainZHANGBaiChangchunInsti...  相似文献   
58.
Locatedinthenuddle-eastempartofQingl1ai-XizangPlateau,thezoneofalpinescrubandmeadow,charaCterizedbyhigl1landsubpolarhu1hid/subhumiddimate,isatransitionalroponfromdeePgorgestoinIandofh1eplateauproper.ThezoneofalpinescrtlbandmeadowstretchesinadireCtionofWSWtoENE,forminganaturalzoneontheplateau.Tl1enaturalzoneisLutiqueinphyslcalenvirorunentsandnaturalecosystems,andcouldnotbefoUndatthelowlandselseWhereonEarth(Figurel).I.CharacteristicsofPbysicalEnvironmentsStartedfromZoigeandAbaofSichuan…  相似文献   
59.
山西关帝山森林上限附近植被的性质与空间格局   总被引:4,自引:1,他引:4  
山西关帝山是中国暖温带落叶阔叶林区域第四高峰,对气候指标的推算表明,关帝山主峰孝文山接近气候意义的林线,对其森林上限附近植被空间格局和性质的分析有助于认识中国东部暖温带高山林线的形成机制。通过野外调查和植被数量分析,探讨了关帝山森林上限附近植物群落的类型、植物群落与环境的关系、植物种类多样性的梯度、植被的性质等理论问题,初步得出:(1)气候和地形条件共同决定关帝山森林上限附近的植被格局;(2)对植被性质的分析表明,关帝山山顶植被为亚高山灌丛和亚高山草甸,不具备高山带的性质,验证了根据气候数据进行的推断;(3)关帝山森林上限附近植物物种多样性随海拔增加而上升,不同于暖温带具有高山带的山地。  相似文献   
60.
Detailed modelling of the hydrological setting of fen meadows appears to be possible provided that detailed information on geomorphology, hydrochemistry and piezometric heads is available for a number of years. In the Laegieskamp, a small wetland reserve located in the central part of The Netherlands, a piezometric monitoring network was sampled for water quality analysis and piezometric heads between 1986 and 1992. Average yearly discharge and recharge periods were used for FLOWNET calculations. First, the models were used to determine, with the help of information on water quality, the hydrological systems in the study area. Secondly, they were used to define the present and past hydrological setting of a fen meadow in the reserve. The hydrological systems and water quality in the study area have changed considerably over the past 65 years. At present the fen meadow is mainly fed by precipitation. The mineral-rich conditions favouring the fen meadow vegetation are thought to be maintained thanks to a clayey peat layer and an oscillating shallow water body that prevents rapid leaching of minerals. The sulphate content in the fen exhibits a pattern of temporal variation, which is related to the severity of the annual drought. Our study showed that groundwater flow is mainly lateral, instead of the assumed vertical infiltration of groundwater in previous regional studies. This led us to the conclusion that conservation and restoration perspectives are much better than previously expected. The polluted middle, deep groundwater is not a major threat to this fen at the moment. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号