首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   16篇
  国内免费   13篇
测绘学   4篇
大气科学   15篇
地球物理   19篇
地质学   63篇
海洋学   8篇
综合类   10篇
自然地理   76篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   13篇
  2013年   6篇
  2012年   12篇
  2011年   11篇
  2010年   5篇
  2009年   14篇
  2008年   4篇
  2007年   16篇
  2006年   20篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有195条查询结果,搜索用时 609 毫秒
21.
High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research. Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 06300102)  相似文献   
22.
对青藏高原高寒草甸30%、60%和93%三种覆盖度下,多年冻土活动层的土壤水分随季节变化的观测研究,结果表明:多年冻土活动层土壤水分分布对植被覆盖变化响应强烈.年内不同时期,植被覆盖度为65%和30%的土壤表层20cm深度内水分含量及分布相似,每次降水后30%覆盖度土壤水分的变率略大于65%覆盖度的;而93%覆盖度土壤水分在年内解冻开始到冻结前均小于前两种覆盖类型;植被覆盖度越小,土壤冻结和融化响应时间越早,响应历时也越短;浅层土壤冻结和融化对植被覆盖度的响应程度较强,接近深层土壤冻结和融化对植被覆盖度的响应程度降低.覆盖度为30%和65%土壤水分在整个冻结过程的减少幅度比93%覆盖度土壤大10%~26%,而融化期水分增加幅度更大为1.5%~80%;土壤冻融的相变水量对植被覆盖度变化响应明显,植被覆盖度降低,土壤冻结和融化相变水量增大.由于受植被蒸腾与地表蒸散发和土壤温度梯度的影响,融化期土壤剖面的水分重新分配,总体上呈现水分向剖面上部和底部迁移,剖面中部60~80cm深度左右的土壤出现"干层".  相似文献   
23.
Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements.  相似文献   
24.
利用理塘县高山草甸地表温度实测数据,分析6种常用AVHRR分裂窗算法的精度,为青藏高原地区地表温度的卫星反演提供技术支持.结果表明:6种常用AVHRR分裂窗算法反演地表温度与实测值之间有很好的线性正相关关系,反演温度与实测温度最大偏差3.36K,最大平均绝对误差2.25k,最小平均绝对误差0.77K.给出了反演高山草甸地表温度的AVHRR分裂窗算法建议.  相似文献   
25.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
26.
Grasslands and agro-ecosystems occupy one-third of the global terrestrial area. However, great uncertainty still exists about their contributions to the global carbon cycle. This study used various com...  相似文献   
27.
长江黄河源区内高寒草甸退化是当前研究的热点问题之一。但多数研究中涉及的源区范围、高寒草甸的分类、高寒草甸的退化原因及恢复治理措施等方面,各学者的看法并不相同,难以实现各项研究结果的比较研究。从源区范围、高寒草甸的分类、高寒草甸的退化原因及恢复治理措施等方面阐述了各学者研究的差异,指出:长江黄河源区高寒草甸的进一步深入研究有必要对源区的范围进行界定;高寒草甸的分类常常因研究目的不同而有所差异,以退化程度进行的分类能够反映高寒草甸的动态变化过程,但需要定量指标对退化的不同程度进行界定;遥感影像解译的结果由于遥感影像本身的不确定性和主观因素的影响而难以统一;退化的原因目前主要集中于自然因素和人为因素两方面的研究,针对这些因素采取的控制措施在局部区域取得了一定效果,但并没有抑制高寒草甸在总体上的进一步退化,寻找一种综合的有效的治理措施还是今后的研究目标。  相似文献   
28.
Agricultural practices are the main stay of the people of Uttranchal. Out of the total population,more than 75% people are engaged either with the main occupation of agriculture or its allied practices,dominated by traditional subsistence cereal farming.Among them, the main crops are rice, wheat, millet,barley, all types of pulses, all types of oilseeds and almost all types of fruits. The crops, vegetables and fruits of all varieties are grown in the different climatic zones such as tropical, temperate, and cold because, the region is characterized by the different altitudinal zones elevated from 200 m to more than 8000m. As a result, different climates are found from hot tropical to sub temperate and chilly cold. Pulses varieties are grown extensively. Among vegetables,potato, onion, carrot, all types of green leaf vegetables,brinzal, pumpkin, ladyfinger, pea, gram, radish,ginger, garlic, etc, are grown widely. All fruit varieties are grown in the different altitudinal zones. The mainfruits are orange, malta (a big size of orange),elephant citrus, lemon and all other types of citrus,apple, stone fruits including peach and pears, manykinds of nuts, and the fruits which are grown in the low lying areas. In spite of feasible climatic conditions,agricultural dominant society, and availability of all types of crops, the production and productivity of these crops are very low, even they are unable to meet the grain-need of the people in Uttaranchal. Agricultural crops are grown almost in all the altitudinal zones -- from the low-lying areas, which are called ‘Ga. ngarh‘, to the highly elevated region,where the legendary term is given as ‘Danda‘. The growing seasons vary according to the heights. The present paper aims to discuss the agricultural practices including cropping season, cropping pattern,land use, production of cropsagricultural system in thisand ecological aspect of Himalayan state and suggest some measures for developing farming system,which could lead the sustainability, in terms of meeting the food grain needs of the people on the one hand and restoring the ecological balance on the other.  相似文献   
29.
垫状植物是高寒地区广泛分布的一类具有特殊形态的植物,被称为高寒生态系统工程师,其在高寒退化草地中的作用如何?本研究以位于西藏当雄念青唐古拉山脉南坡4500m的一处高寒退化草地为例,调查了垫状点地梅覆盖区域内外的物种多样性、土壤养分以及水分的差异。结果表明:垫状点地梅可以显著改善土壤养分,提高幅度大约为16%-48%,其中有机质和总氮(N)分别增加了16.2%和18.9%;局部土壤含水量提高约12%;样方内的物种丰富度(S)、Shannon-Wiener指数(H)和Simpson指数(D)都随着垫状点地梅盖度的增加而呈增加的趋势。垫状点地梅在退化草地中具有显著的改善土壤微环境和提高群落物种多样性的作用,应加强保育以促进高寒退化草地的恢复。  相似文献   
30.
To understand and predict the role of soils in changes in alpine meadow ecosystems during climate warming, soil monoliths, extending from the surface to the deepest roots, were collected from Carex moorcroftii, Kobresia humilis, mixed grass, and Kobresia pygmaea alpine meadows in the hinterland of the Tibetan Plateau, China. The monoliths were used to measure the distribution with depth of biomass, soil grain size, soil nutrient levels, and soil moisture. With the exception of the K. pygmaea meadow, the percentages of gravel and coarse sand in the soils were high, ranging from 37.7 to 57.8% for gravel, and from 18.7 to 27.9% for coarse sand. The texture was finest in the upper 10 cm soil layer, and generally became coarser with increasing depth. Soil nutrients were concentrated in the top 15 cm soil layer, especially in the top 10 cm. Soil water content was low, ranging from 3 to 28.4%. Most of the subsurface biomass was in the top 10 cm, with concentrations of 79.8% in the K. humilis meadow, 77.6% in the mixed grass meadow, and 62.3% in the C. moorcroftii meadow. Owing to deeper root penetration, the concentration of subsurface biomass in the upper 10 cm of K. pygmaea soil was only 41.7%. The subsurface biomass content decreased exponentially with depth; this is attributed to the increase in grain size and decrease in soil nutrient levels with depth. Soil water is not a primary factor influencing the vertical and spatial distribution of subsurface biomass in the study area. The lack of fine material and of soil nutrients resulted in low surficial and subsurface biomass everywhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号