首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   28篇
  国内免费   14篇
测绘学   14篇
大气科学   66篇
地球物理   22篇
地质学   10篇
海洋学   3篇
综合类   9篇
自然地理   57篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   6篇
  2019年   19篇
  2018年   12篇
  2017年   7篇
  2016年   7篇
  2015年   6篇
  2014年   15篇
  2013年   9篇
  2012年   9篇
  2011年   11篇
  2010年   9篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有181条查询结果,搜索用时 625 毫秒
161.
夏玉米田土壤水分-养分-盐分剖面二维数值模拟   总被引:1,自引:1,他引:1  
以衡水试验场夏玉米田为例,建立了田间沟垄地形条件下土壤剖面的二维饱和-非饱和水流及溶质运移数学模型,对夏玉米生长条件下土壤剖面水分、养分和盐分(以下简称水养盐)的动态进行了模拟,揭示了典型时刻土壤水流动系统特征及其与土壤水分、养分和盐分的关系。结果表明:①所建立的数学模型以及模型中的参数可较好地描述和模拟土壤剖面水养盐的运移过程和变化规律;②土壤剖面水养盐的分布明显受土壤沟垄地形的影响;③在夏玉米生长期,土壤处于“耗养”和“脱盐”状态。  相似文献   
162.
针对干旱灌区水资源紧张、土壤次生盐渍化现象严重的现实,在相同灌溉定额下设计不同的盐分梯度,进行干旱灌区膜下滴灌对玉米根系生长及根区盐分运移的影响试验研究,其结果表明:当膜下滴灌灌水量为0.2776 m3\5m-2时,对土壤电导率在1.575 ds\5m-1以内的盐碱地均可进行玉米生产;膜下滴灌可有效抑制土壤盐分上移,在0—40 cm土层内盐分下移明显,QY1、QY2、QY3三个处理平均比对照含盐量减少7.0%、9.5%和23 %,在40—60 cm内盐分积累最高;膜下滴灌可使0—40 cm土层内形成淡化脱盐区,这有利于玉米根系的发育,54%~91%的玉米根系分布在此范围内;膜下滴灌比大水漫灌节水67%,且技术体系成熟,材料国产化,成本降低,完全可以在干旱灌区大面积推广应用。  相似文献   
163.
Exploring the dynamics of the utilization of agricultural climatic resources (i.e., environmental factors that affect crop productivity such as light, temperature, and water) can provide a theoretical basis for modifying agricultural practices and distributions of agricultural production in the future. Northeast China is one of the major agricultural production areas in China and also an obvious region of climatic warming. We were motivated to analyze the utilization dynamics of agricultural climatic resource during spring maize cultivation from 1961 to 2010 in Northeast China. To understand these dynamics, we used the daily data from 101 meteorological stations in Northeast China between 1961 and 2010. The demands on agricultural climatic resources in Northeast China imposed by the cultivation of spring maize were combined and agricultural climatic suitability theory was applied. The growth period of spring maize was further detailedly divided into four stages: germination to emergence, emergence to jointing, jointing to tasseling, and tasseling to maturity. The average resource utilization index was established to evaluate the effects. Over the past five decades, Northeast China experienced increases in daily average temperature of 0.246 °C every decade during the growing season (May–September). At the same time, strong fluctuating decreases were observed in average total precipitation of 8.936 mm every decade and an average sunshine hour of 0.122 h every decade. Significant temporal and spatial changes occurred in K from 1961 to 2010. The K showed decreasing trends in Liaoning province and increasing trends in Jilin and especially in Heilongjiang province, which increased by 0.11. Spatial differences were visible in different periods, and the most obvious increase was found in the period 2001–2010. The areas with high values of K shifted northeastward over the past 50 years, indicating more efficient use of agricultural climatic resources in Northeast China.  相似文献   
164.
利用2008年锦州玉米农田生态系统野外观测站资料对CoLM与BATS1e模型模拟能力进行定量评价。比较发现: 两模型对净辐射和表层土壤温度的模拟精度都较高且差异不大,CoLM模型对感热、潜热、土壤热通量、次表层土壤温度模拟能力都不同程度高于BATS1e模型,模拟值对实测值解释能力分别偏高3%、22%、1%、10%,NS (Nash-sutcliffe效率系数)分别偏高1.042、0.266、0.023、0.138。从各月情况看,两模型在7月对感热、潜热模拟能力都较高,而在其它月份CoLM模型模拟精度明显高于BATS1e模型,土壤热通量和次表层土壤温度在5~8月前者模拟精度高于后者。由于CoLM模型对潜热更高精度的模拟可证明其对表层土壤湿度模拟精度高于BATS1e模型。  相似文献   
165.
在大量的植被冠层遥感模型中,辐射度模型作为一种计算机模拟模型具有很多优点,它对理解植被—辐射相互作用过程和研究植被冠层辐射机理具有重要的理论价值。传统的辐射度模型假设冠层内叶片为朗伯体。但随着对叶片特性的深入研究发现,叶片的反射特性不能单纯的看成是理想漫反射过程。为了消除传统辐射度模型的朗伯假设,完善辐射度模型,本文利用Phong光照模型模拟叶片表面非朗伯(镜面反射)部分的分布特性,在基于真实结构冠层场景的辐射度模型(RGM)的基础上,增加了叶片镜面反射分量的计算。文中以玉米冠层为例,比较并分析了叶片的镜面反射分量对冠层辐射分布的影响。最后,从辐射度模型原理出发,进一步推导得出了计算冠层镜面反射分量的辐射度公式,从理论上证明了在可见光—近红外区的冠层镜面反射分量与波长无关。本文使用的方法具有简单、易于实现的特点。经过扩展后的辐射度模型既保留了传统辐射度模型的优点,又增加了该模型的功能和模拟范围。  相似文献   
166.
利用夜间热红外数据求取玉米冠层孔隙率   总被引:1,自引:0,他引:1  
孔隙率是光线透过冠层未被拦截到达地表的概率,是描述冠层结构和生物量空间分布的关键变量。已有研究证明,在夜间热红外图像上,玉米地各亮温组分比较稳定,并且温度均值有明显差异,易于区分。本研究的目的是利用2005年8月23日在怀来测得的夜间热红外数据求取中等密度的玉米冠层(LA I=3.64)在不同角度下的孔隙率。结果表明,在沿垄行方向,孔隙率随着天顶角变化缓慢;而在其他方向(45°和90°)变化较快,且变化趋势相似。将测得结构参数代入余涛的热红外方向辐射性模型,模拟出不同方向下的孔隙率。将测量值与模拟值进行对比,二者有一定的相似性,模型能较好地抓住玉米冠层孔隙率的主要特征。针对二者间的差异,初步分析是由测量中观测目标不完全一致、角度控制不精确、测量高度过低以及投影函数和丛生参数的选择等原因引起的。  相似文献   
167.
气象灾害指标在湖南春玉米种植区划中的应用   总被引:6,自引:3,他引:6       下载免费PDF全文
根据湖南省97个气象站1961—2004年气温、日照、降水等气象资料, 结合玉米生态习性和田间试验分析结果, 计算了玉米生长期内相关的灾害指标。得出玉米吐丝-成熟期干旱、高温热害及播种-出苗期的连阴雨3个气象灾害指标对其生长的影响最大, 在分析该3个灾害指标的地域分布特征基础上, 利用该3个指标出现概率, 引进“无级变速”原理, 进行春玉米种植区划。区划结果表明:湖南大部分地方适宜种植春玉米, 从区划结果与实际产量对比分析比较, 湖南玉米的高产区均在最适宜区和适宜区内; 低产区大多都在较适宜区和次适宜区, 只是湘东南山地低产区在最适宜区范围内, 与实际情况不吻合。原因可能是这一区域玉米生长期内光、温资源不足, 加之土壤肥力较差的缘故。  相似文献   
168.
东北春玉米非线性积温模型参数改进   总被引:2,自引:2,他引:0       下载免费PDF全文
结合我国东北地区春玉米生长发育的实际情况,以观测年份较多、观测地点较广为原则选取4个春玉米品种,分别为东农248、龙单13、四单19和丹玉13,利用生长发育观测资料和同期气象观测资料,判断4个玉米品种的相对熟型并对沈国权非线性积温模型(简称NLM)进行参数拟合,讨论参数的生物学意义及其与品种熟型的关系,对NLM进行有效改进及验证。结果表明:4个春玉米品种NLM均不存在无效参数,参数K与参数Q存在显著的相关性,说明K可能仅是一个统计参数,没有明确的生物学意义;积温在品种间存在显著差异,全生育期模型参数Q与多年站次平均有效积温或活动积温有较好的相关性,由于不同的积温意味着不同的玉米品种熟型,说明Q与玉米品种的熟型有关,将模型参数Q和K用反映玉米品种熟型的参数(有效积温、活动积温)表示,建立了适用于不同品种的通用积温模型,取得较好的应用效果。  相似文献   
169.
气候变化背景下1981-2010年中国玉米物候变化时空分异   总被引:1,自引:0,他引:1  
秦雅  刘玉洁  葛全胜 《地理学报》2018,73(5):906-916
基于中国玉米种植区内114个农气站1981-2010年的长序列物候观测数据,量化分析了玉米8个连续物候期的时空分异特征和相应的生长阶段长度变化规律。结果表明:1981-2010年间,玉米生育期内平均温度和有效积温(GDD)呈现增加趋势,降水量和日照时数呈现减少趋势。气候变化背景下,玉米物候期发生了显著变化。春玉米物候期以提前趋势为主,包括西北内陆玉米区春玉米、西南山地丘陵玉米区春玉米;夏玉米和春夏播玉米各物候期在不同区域均呈现推迟的趋势,西北内陆玉米区夏玉米各物候期推迟的幅度大于黄淮平原夏玉米各物候期推迟的幅度。玉米物候期的变化改变了相应生长阶段的长度,中国春/夏/春夏播玉米营养生长期(播种期—抽雄期)呈现不同程度的缩短趋势,而对应的生殖生长期(抽雄期—成熟期)呈现不同程度的延长趋势;春玉米生育期(播种期—成熟期)延长,夏/春夏播玉米生育期缩短。  相似文献   
170.
河南省夏玉米气候适宜度评价   总被引:3,自引:0,他引:3  
为定量评价气象条件对作物生长及产量形成的影响,本文依据夏玉米不同发育阶段上限温度、最适温度、下限温度、需水量、需光性等生物学指标,构建了河南省夏玉米气候适宜度评价模型。通过对13个代表站30 a全生育期气候适宜度和相对气象产量进行相关分析,表明该模型能较好地反映河南省夏玉米的气候适宜水平及其动态变化。利用检验后的模型计算了河南省67个站1981-2011年夏玉米生长季单因子及综合气候适宜度,结果表明河南省夏玉米大部分生育期光热资源较适宜,能满足玉米生长所需,仅在灌浆后期略显不足,降水是影响夏玉米产量形成的主要限制因子,且降水适宜度年际变化幅度大于日照和温度。综合气候适宜度年际波动表现为抽雄—乳熟期〉出苗—抽雄期〉全生育期。空间分布上气候适宜度呈自西北向东南方向的递增趋势,适宜度高值区分布在南阳东部及驻马店部分地区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号