首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3485篇
  免费   1106篇
  国内免费   503篇
测绘学   234篇
大气科学   249篇
地球物理   1891篇
地质学   1625篇
海洋学   260篇
天文学   15篇
综合类   263篇
自然地理   557篇
  2024年   35篇
  2023年   94篇
  2022年   152篇
  2021年   182篇
  2020年   175篇
  2019年   214篇
  2018年   169篇
  2017年   202篇
  2016年   198篇
  2015年   220篇
  2014年   238篇
  2013年   209篇
  2012年   207篇
  2011年   195篇
  2010年   149篇
  2009年   180篇
  2008年   176篇
  2007年   216篇
  2006年   186篇
  2005年   165篇
  2004年   171篇
  2003年   147篇
  2002年   135篇
  2001年   94篇
  2000年   94篇
  1999年   93篇
  1998年   110篇
  1997年   106篇
  1996年   98篇
  1995年   79篇
  1994年   61篇
  1993年   75篇
  1992年   59篇
  1991年   45篇
  1990年   42篇
  1989年   25篇
  1988年   33篇
  1987年   24篇
  1986年   17篇
  1985年   3篇
  1982年   1篇
  1980年   2篇
  1979年   5篇
  1974年   1篇
  1954年   12篇
排序方式: 共有5094条查询结果,搜索用时 0 毫秒
1.
2.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   

3.
4.
5.
6.
《Journal of Hydrology》2003,281(4):251-264
Practical application of geostatistical inversion to coupled problems is hampered by a number of difficulties. In this paper, we address two of them: first, the computational cost of sensitivity (Jacobian) matrices and, second, the evaluation of the relative weights of different types of data. Regarding the first, we revise the adjoint state equations to propose a form whose cost is independent of the number of unknown parameters and only grows with the number of observation wells. Regarding the second, we derive expressions for the relative weights of different types of data. These expressions are based on minimizing the expected likelihood, rather than the likelihood itself. The efficiency of both improvements is tested on a synthetic example. The example analyzes a wide range of groundwater flow and solute transport conditions. Yet, the expected likelihood consistently yields the optimal weights. The proposed form of the adjoint state equations leads to one order of magnitude reduction in CPU time with respect to the conventional sensitivity equations.  相似文献   
7.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
8.
地球物理联合反演研究综述   总被引:12,自引:7,他引:12  
地球物理联合反演由于使反演问题的非唯一性得到有效限制而越来越受到人们的重视。本文概述了联合反演的发展现状及实现的方法,并讨论了其发展趋势及其局限性,指出地球物理联合反演是地球物理数据分析的理想工具,而非线性联合反演方法则是地球物理联合反演发展的方向。  相似文献   
9.
While the inversion of electromagnetic data to recover electrical conductivity has received much attention, the inversion of those data to recover magnetic susceptibility has not been fully studied. In this paper we invert frequency-domain electromagnetic (EM) data from a horizontal coplanar system to recover a 1-D distribution of magnetic susceptibility under the assumption that the electrical conductivity is known. The inversion is carried out by dividing the earth into layers of constant susceptibility and minimizing an objective function of the susceptibility subject to fitting the data. An adjoint Green's function solution is used in the calculation of sensitivities, and it is apparent that the sensitivity problem is driven by three sources. One of the sources is the scaled electric field in the layer of interest, and the other two, related to effective magnetic charges, are located at the upper and lower boundaries of the layer. These charges give rise to a frequency-independent term in the sensitivities. Because different frequencies penetrate to different depths in the earth, the EM data contain inherent information about the depth distribution of susceptibility. This contrasts with static field measurements, which can be reproduced by a surface layer of magnetization. We illustrate the effectiveness of the inversion algorithm on synthetic and field data and show also the importance of knowing the background conductivity. In practical circumstances, where there is no a priori information about conductivity distribution, a simultaneous inversion of EM data to recover both electrical conductivity and susceptibility will be required.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号