首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   152篇
  国内免费   434篇
测绘学   4篇
大气科学   63篇
地球物理   219篇
地质学   1040篇
海洋学   42篇
天文学   4篇
综合类   34篇
自然地理   48篇
  2024年   10篇
  2023年   15篇
  2022年   38篇
  2021年   32篇
  2020年   38篇
  2019年   45篇
  2018年   41篇
  2017年   41篇
  2016年   42篇
  2015年   38篇
  2014年   59篇
  2013年   49篇
  2012年   62篇
  2011年   44篇
  2010年   42篇
  2009年   65篇
  2008年   87篇
  2007年   84篇
  2006年   61篇
  2005年   75篇
  2004年   66篇
  2003年   48篇
  2002年   37篇
  2001年   33篇
  2000年   22篇
  1999年   32篇
  1998年   32篇
  1997年   31篇
  1996年   28篇
  1995年   19篇
  1994年   33篇
  1993年   15篇
  1992年   14篇
  1991年   15篇
  1990年   19篇
  1989年   11篇
  1988年   11篇
  1987年   14篇
  1986年   5篇
  1978年   1篇
排序方式: 共有1454条查询结果,搜索用时 265 毫秒
141.
辽宁赛马碱性岩位于辽东半岛东部,是我国的一个典型碱性岩区,出露面积约280km ̄2,其岩性较单一,主要以正长岩和霞石正长岩为主,其主体形成于早三叠纪,碱性岩浆的活动一直延续到早侏罗纪。赛马碱性岩浆起源于地幔,由幔源岩浆的结晶分异伴随着壳层物质(下地壳)的混合而形成。二元混合计算表明,赛马碱性岩相当于53%~61%的亏损地幔加上39%~47%的下地壳物质组成的混合物,在成因上为壳、幔混合型,以幔源为主。赛马碱性岩的U,Th,TREE应来源于地幔分异。  相似文献   
142.
在浙西北双溪坞群和上墅组火山岩系获得较可靠的Sm-Nd同位素年龄的基础上,本文进一步做了Nd、Sr同位素地球化学研究。∈Nd(T)和∈Sr(T)示踪判别了该区前震旦纪火山岩浆源区特征及其物质来源。同时,Nd同位素模式年龄为该区存在更古老基底提供了重要的地质年代信息。  相似文献   
143.
We have done extensive Monte Carlo simulations using the new simulation codes of CORSIKA and COSMOS to compare with the gamma-family data obtained at Mts. Fuji (3750 m above sea level) and Kanbala (5500 m above sea level). Then, we estimated the primary proton and helium spectra around the knee energy region using a multiple-layered feed-forward neural network as a classifier of primary particle kind. The selection efficiency of proton-induced family events is estimated to be 82%. The flux value of protons at 2×1015 eV is (5.5±1.5)×10−14 (m−2 s−1 sr−1 GeV−1). The result suggests heavy-enriched primary composition around the knee region.  相似文献   
144.
Granitic magmas migrated through Early Proterozoic middle–lower crust at Mt Hay, central Australia, via a diverse network of narrow structurally controlled channelways, during a period of progressive W–SW-directed thrusting (D1a–D1d). They utilized existing folds, boudins and shear zones, or created new channels by magmatic fracture either parallel to layering or, rarely, in irregular arrays. The magmas rose obliquely, parallel to the plunging (50–60°) regional elongation direction, which was defined by coaxial folds, boudin necks and a strong mineral-elongation lineation. Megacrystic charnockitic magmas migrated through metre-scale conduits during D1a–D1b, but leucosomes were generally restricted to smaller (centimetre-scale) structures that existed throughout the entire deformation history. Thus, D1a/D1b leucosomes were potential feeders of in situ partial melts to the adjacent larger conduits of charnockite magma, thereby providing a pervasive interconnected network that allowed efficient migration of all magma types during the early stages of thrusting. The upper–middle crust of the Anmatjira–Reynolds Range area contains abundant megacrystic granitoid sheets that are of similar age and geochemistry to those at Mt Hay. They are considered to have formed as syntectonic intrusions emplaced during W–SW-directed thrusting, as at Mt Hay, suggesting that granitic magmas formed near the base of the continental crust passed through the mid-lower crustal level (25–30 km) exposed at Mt Hay and accumulated, in batholithic proportions, at shallower crustal levels (12–20 km) such as the Anmatjira–Reynolds Range area. The observations imply that granitoid magmas in the deep crust are capable of pervasive migration through the crust during major compressive, noncoaxial shear deformation. Localization of magmas by sequentially developed, narrow, compressive structures suggests that dilatancy followed successive foliation-forming events, a situation that can occur during steady-state deformation if the effective confining pressures are low, which would be a result of high and possibly variable rates of magma influx. The inferred rapid melt segregation and migration during deformation suggest that large chambers do not form until magma reaches neutral buoyancy in the middle to upper continental crust.  相似文献   
145.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   
146.
Studies on the deep-seated xenoliths from global volcanoes reveal that the present petrological crust-mantle boundary between the lower crust and the upper mantle actually is a transitional layer from mainly mafic granulites to ultramafic spinel lher-zolites[1,2], i.e. a transitional zone distinctive from the seismological Moho[3]. Oceanic lithosphere crust- mantle transitional zone can be established from the study on the exposed ophiolites. However, as for the continental lithosphere, since …  相似文献   
147.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   
148.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   
149.
Plio-Pleistocene volcanism in the Golan and Galilee (northeasternIsrael) shows systematic variability with time and location:alkali basalts were erupted in the south during the Early Pliocene,whereas enriched basanitic lavas erupted in the north duringthe Late Pliocene (Galilee) and Pleistocene (Golan). The basaltsshow positive correlations in plots of ratios of highly to moderatelyincompatible elements versus the concentration of the highlyincompatible element (e.g. Nb/Zr vs Nb, La/Sm vs La) and indiagrams of REE/HFSE (rare earth elements/high field strengthelements) vs REE concentration (e.g. La/Nb vs La). Some of thesecorrelations are not linear but upward convex. 87Sr/86Sr ratiosvary between 0·7031 and 0·7034 and correlate negativelywith incompatible element concentrations and positively withRb/Sr ratios. We interpret these observations as an indicationthat the main control on magma composition is binary mixingof melts derived from two end-member mantle source components.Based on the high Sr/Ba ratios and negative Rb anomalies inprimitive mantle normalized trace element diagrams and the moderateslopes of MREE–HREE (middle REE–heavy REE) in chondrite-normalizeddiagrams, we suggest that the source for the alkali basalticend-member was a garnet-bearing amphibole peridotite that hadexperienced partial dehydration. The very high incompatibleelement concentrations, low K content, very low Rb contentsand steep MREE–HREE patterns in the basanites are attributedto derivation from amphibole- and garnet-bearing pyroxeniteveins. It is suggested that the veins were produced via partialmelting of amphibole peridotites, followed by complete solidificationand dehydration that effectively removed Rb and K. The requirementfor the presence of amphibole limits both sources to lithosphericdepths. The spatial geochemical variability of the basalts indicatesthat the lithosphere beneath the region is heterogeneous, composedof vein-rich and vein-poor domains. The relatively uniform 143Nd/144Nd(Nd = 4·0–5·2) suggests that the two mantlesources were formed by dehydration and partial melting of anoriginally isotopically uniform reservoir, probably as a resultof a Paleozoic thermal event. KEY WORDS: basanites; lithospheric heterogeneity; magma mixing; amphibole peridotite; pyroxenites  相似文献   
150.
CO2 efflux was estimated using different regression methods in static chamber observation from an alpine meadow on the Qinghai-Tibetan Plateau. The CO2 efflux showed a seasonal pattern, with the maximun flux occurring in the middle of July. The temperature sensitivity of CO2 efflux (Q10> was 3.9, which was at the high end of the range of global values. CO2 emissions calculated by linear and nonlinear regression were significantly different (p<0.05). Compared with the linear regression, CO2 emissions calculated by exponential regression and quadratic regression were 12.7% and 11.2% larger, respectively. However, there were no significant differences in temperature sensitivity values estimated by the three methods. In the entire growing season, the CO2 efflux estimated by linear regression may be underestimated by up to 25% compared to the real CO2 efflux. Consequently, great caution should be taken when using published flux data obtained by linear regression of static chamber observations to estimate the regional CO2 flux in alpine meadows on the Qinghai-Tibetan Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号