首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4593篇
  免费   932篇
  国内免费   767篇
测绘学   192篇
大气科学   249篇
地球物理   2961篇
地质学   1274篇
海洋学   820篇
天文学   113篇
综合类   256篇
自然地理   427篇
  2024年   19篇
  2023年   66篇
  2022年   165篇
  2021年   199篇
  2020年   240篇
  2019年   260篇
  2018年   211篇
  2017年   225篇
  2016年   213篇
  2015年   268篇
  2014年   320篇
  2013年   279篇
  2012年   286篇
  2011年   295篇
  2010年   278篇
  2009年   284篇
  2008年   281篇
  2007年   313篇
  2006年   273篇
  2005年   251篇
  2004年   228篇
  2003年   196篇
  2002年   170篇
  2001年   130篇
  2000年   141篇
  1999年   123篇
  1998年   112篇
  1997年   101篇
  1996年   97篇
  1995年   56篇
  1994年   49篇
  1993年   37篇
  1992年   27篇
  1991年   22篇
  1990年   17篇
  1989年   12篇
  1988年   10篇
  1987年   16篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1954年   1篇
排序方式: 共有6292条查询结果,搜索用时 31 毫秒
951.
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.  相似文献   
952.
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the dipole source.  相似文献   
953.
954.
A frequency response function change (FRFC) method to detect damage location and extent based on the change in the frequency response functions of a shear building under the effects of ground excitation was proposed in this paper. The damage identification equation was derived from the motion equations of the system before and after the occurrence of the damage. Efforts to make the FRFC method less model‐dependent were made. Intact system matrices, which could be estimated using the measured data without the need for an analytical model, and the frequency response functions were required for the FRFC method. The effects of measurement noise and model parameter error in the FRFC method were studied numerically. The proposed FRFC method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
955.
Reinforced concrete structure may exhibit significant inelastic hysteretic behavior when subject to strong earthquake excitation. To investigate such an inelastic behavior, in this study, a new system identification technique is applied by using the deteriorating distributed element (DDE) model to simulate the hysteretic behavior of a degrading structure. Through the advanced signal processing technique, the multiple singular spectrum analysis (SSA) and the nonlinear SSA, the recorded inelastic restoring force of a deteriorating structure can be decomposed into several independent additive components in its sequentially degrading order and with decreasing weight. With each decomposed hysteresis loop, the model parameters of the DDE model are identified. The evolutionary properties of the progressive stiffness degradation behavior of reinforced concrete structure can be observed from the identified model parameters. Finally, comparison on the physical properties of the identified DDE model with respect to the seismic response data of the deteriorating structure is also discussed. The result shows that the proposed identification technique can have a good estimation on the seismic behavior of the degrading structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
956.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
957.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
958.
In this report, the capabilities of the adaptively shifted integration (ASI)‐Gauss code in the analysis of the seismic responses of framed structures are verified and validated by comparing the results with detailed numerical simulations performed by the parallel finite element analysis code, E‐Simulator, and with experimental results obtained by E‐Defense. The numerical results obtained by both codes showed good agreement with the experimental results obtained by E‐Defense. Furthermore, seismic waves with unnaturally large magnitudes are applied to a high‐rise building model to demonstrate the ability of the ASI‐Gauss code to analyze the collapse behaviors of building frames. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
959.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
960.
In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk‐based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20‐story reinforced concrete frame structure. Here, the methodology is repeated for intensity‐based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity‐based and risk‐based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity‐based assessment. When used for intensity‐based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk‐based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity‐based seismic assessments using the CS in future building codes and the risk‐based seismic assessments typically used in performance‐based earthquake engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号