首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2918篇
  免费   403篇
  国内免费   977篇
大气科学   24篇
地球物理   637篇
地质学   3133篇
海洋学   284篇
天文学   17篇
综合类   26篇
自然地理   177篇
  2024年   26篇
  2023年   58篇
  2022年   93篇
  2021年   149篇
  2020年   165篇
  2019年   191篇
  2018年   170篇
  2017年   179篇
  2016年   169篇
  2015年   155篇
  2014年   175篇
  2013年   213篇
  2012年   195篇
  2011年   149篇
  2010年   120篇
  2009年   199篇
  2008年   288篇
  2007年   227篇
  2006年   198篇
  2005年   172篇
  2004年   178篇
  2003年   108篇
  2002年   104篇
  2001年   91篇
  2000年   103篇
  1999年   69篇
  1998年   75篇
  1997年   64篇
  1996年   41篇
  1995年   26篇
  1994年   53篇
  1993年   23篇
  1992年   14篇
  1991年   5篇
  1990年   13篇
  1989年   6篇
  1988年   9篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有4298条查询结果,搜索用时 62 毫秒
911.
We reconstructed late Holocene fluctuations of Kluane Lake in Yukon Territory from variations in bulk physical properties and carbon and nitrogen elemental and isotopic abundances in nine sediment cores. Fluctuations of Kluane Lake in the past were controlled by changes in climate and glaciers, which affected inflow of Slims and Duke rivers, the two largest sources of water flowing into the lake. Kluane Lake fluctuated within a narrow range, at levels about 25 m below the present datum, from about 5000 to 1300 cal yr BP. Low lake levels during this interval are probably due to southerly drainage of Kluane Lake to the Pacific Ocean, opposite the present northerly drainage to Bering Sea. Slims River, which today is the largest contributor of water to Kluane Lake, only rarely flowed into the lake during the period 5000 to 1300 cal yr BP. The lake rose 7-12 m between 1300 and 900 cal yr BP, reached its present level around AD 1650, and within a few decades had risen an additional 12 m. Shortly thereafter, the lake established a northern outlet and fell to near its present level.  相似文献   
912.
The origin of large-volume Yellowstone ignimbrites and smaller-volumeintra-caldera lavas requires shallow remelting of enormous volumesof variably 18O-depleted volcanic and sub-volcanic rocks alteredby hydrothermal activity. Zircons provide probes of these processesas they preserve older ages and inherited 18O values. This studypresents a high-resolution, oxygen isotope examination of volcanismat Yellowstone using ion microprobe analysis with an averageprecision of ± 0·2 and a 10 µm spot size.We report 357 analyses of cores and rims of zircons, and isotopeprofiles of 142 single zircons in 11 units that represent majorYellowstone ignimbrites, and post-caldera lavas. Many zirconsfrom these samples were previously dated in the same spots bysensitive high-resolution ion microprobe (SHRIMP), and all zirconswere analyzed for oxygen isotope ratios in bulk as a functionof grain size by laser fluorination. We additionally reportoxygen isotope analyses of quartz crystals in three units. Theresults of this work provide the following new observations.(1) Most zircons from post-caldera low-18O lavas are zoned,with higher 18O values and highly variable U–Pb ages inthe cores that suggest inheritance from pre-caldera rocks exposedon the surface. (2) Many of the higher-18O zircon cores in theselavas have U–Pb zircon crystallization ages that postdatecaldera formation, but pre-date the eruption age by 10–20kyr, and represent inheritance of unexposed post-caldera sub-volcanicunits that have 18O similar to the Lava Creek Tuff. (3) Youngand voluminous 0·25–0·1 Ma intra-calderalavas, which represent the latest volcanic activity at Yellowstone,contain zircons with both high-18O and low-18O cores surroundedby an intermediate-18O rim. This implies inheritance of a varietyof rocks from high-18O pre-caldera and low-18O post-calderaunits, followed by residence in a common intermediate-18O meltprior to eruption. (4) Major ignimbrites of Huckleberry Ridge,and to a lesser extent the Lava Creek and Mesa Falls Tuffs,contain zoned zircons with lower-18O zircon cores, suggestingthat melting and zircon inheritance from the low-18O hydrothermallyaltered carapace was an important process during formation ofthese large magma bodies prior to caldera collapse. (5) The18O zoning in the majority of zircon core–rim interfacesis step-like rather than smoothly inflected, suggesting thatprocesses of solution–reprecipitation were more importantthan intra-crystalline oxygen diffusion. Concave-downward zirconcrystal size distributions support dissolution of the smallercrystals and growth of rims on larger crystals. This study suggeststhat silicic magmatism at Yellowstone proceeded via rapid, shallow-levelremelting of earlier erupted and hydrothermally altered Yellowstonesource rocks and that pulses of basaltic magma provided theheat for melting. Each post-caldera Yellowstone lava representsan independent homogenized magma batch that was generated rapidlyby remelting of source rocks of various ages and 18O values.The commonly held model of a single, large-volume, super-solidus,mushy-state magma chamber that is periodically reactivated andproduces rhyolitic offspring is not supported by our data. Rather,the source rocks for the Yellowstone volcanism were cooled belowthe solidus, hydrothermally altered by heated meteoric watersthat caused low 18O values, and then remelted in distinct pocketsby intrusion of basic magmas. Each packet of new melt inheritedzircons that retained older age and 18O values. This interpretationmay have significance for interpreting seismic data for crustallow-velocity zones in which magma mush and solidified areasexperiencing hydrothermal circulation occur side by side. Newbasalt intrusions into this solidifying batholith are requiredto form the youngest volcanic rocks that erupted as independentrhyolitic magmas. We also suggest that the Lava Creek Tuff magmawas already an uneruptable mush by the time of the first post-calderaeruption after 0·1 Myr of the climactic caldera-formingeruption. KEY WORDS: Yellowstone; oxygen isotopes; geochronology; isotope zoning; zircon; U–Pb dating; caldera; rhyolite; ion microprobe  相似文献   
913.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   
914.
In situ LAM-ICPMS U-Pb, Hf-isotope and trace-element analyses of zircon have been used to evaluate the relative contributions of juvenile mantle and crustal sources to the intrusive rocks of the mafic to intermediate, gold-poor Tuckers Igneous Complex (TIC), and the spatially and temporally related, felsic Mount Leyshon Igneous Complex (MLIC), which hosts a gold-rich porphyry system.

The TIC intrusions range in age from 304.2 ± 9.1 Ma to 288.5 ± 6.4 Ma, and the MLIC intrusions from 291.0 ± 4.8 Ma to 288 ± 6 Ma. Cross-cutting relationships define the intrusion sequence from oldest to youngest; Diorite, Monzodiorite, Mafic Granodiorite and Biotite Microgranite within the TIC; Early Dyke, Southern Porphyry and Late Dyke within the MLIC.

Zircons from the earliest rock type within each complex have a wide range in Hf (5.2 to 14.8 for the TIC Diorite, 2.0 to 12.4 for the MLIC Early Dykes) suggesting the mixing of juvenile and crustal magmas. This interpretation is supported by trace-element data that show the presence of two distinct zircon populations in the MLIC Early Dyke. The later intrusive rocks have narrower ranges in Hf (typically < 4 Hf units) and trace-element patterns of zircon. This homogeneity suggests derivation from magmas produced by further mixing and fractional crystallisation of the TIC Diorite and the MLIC Early Dyke magmas respectively. A greater crustal contribution to the gold-rich MLIC is inferred from the range of median Hf (3.2 to 4.5 for the MLIC, 5.4 to 8.7 for the TIC). We suggest that the MLIC was derived by melting of more felsic crustal rocks, and with less input from juvenile mantle, then the TIC; it was not derived by fractional crystallisation of an intermediate to mafic TIC-like magma. Modelling of Hf isotope data yields a mean model age of 1040 ± 10 Ma (at 176Lu/177Hf = 0.015) for the crustal component in both complexes.

Gold was precipitated in the MLIC Breccia during the emplacement of the Late Dykes. The isotopically homogenous nature of the Late Dykes suggests that no additional juvenile-mantle input was involved at the mineralisation stage. This supports a model in which gold and other metals were indigenous to the Late Dykes magma and were concentrated by magma differentiation and fluid-evolution processes.  相似文献   

915.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc. The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies, three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite, chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides from the stratabound mineralisation display δ 34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur isotope zonation of about 2‰; usually, δ 34S values increase towards the rims. Sulphate sulphur has δ 34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids.  相似文献   
916.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
917.
The Osborne iron oxide–copper–gold (IOCG) deposit is hosted by amphibolite facies metasedimentary rocks and associated with pegmatite sheets formed by anatexis during peak metamorphism. Eleven samples of ore-related hydrothermal quartz and two pegmatitic quartz–feldspar samples contain similarly complex fluid inclusion assemblages that include variably saline (<12–65 wt% salts) aqueous and liquid carbon dioxide varieties that are typical of IOCG mineralisation. The diverse fluid inclusion types present in each of these different samples have been investigated by neutron-activated noble gas analysis using a combination of semi-selective thermal and mechanical decrepitation techniques. Ore-related quartz contains aqueous and carbonic fluid inclusions that have similar 40Ar/36Ar values of between 300 and 2,200. The highest-salinity fluid inclusions (47–65 wt% salts) have calculated 36Ar concentrations of approximately 1–5 ppb, which are more variable than air-saturated water (ASW = 1.3–2.7 ppb). These fluid inclusions have extremely variable Br/Cl values of between 3.8 × 10−3 and 0.3 × 10−3, and I/Cl values of between 27 × 10−6 and 2.4 × 10−6 (all ratios are molar). Fluid inclusions in the two pegmatite samples have similar 40Ar/36Ar values of ≤1,700 and an overlapping range of Br/Cl and I/Cl values. High-salinity fluid inclusions in the pegmatite samples have 2.5–21 ppb 36Ar, that overlap the range determined for ore-related samples in only one case. The fluid inclusions in both sample groups have 84Kr/36Ar and 129Xe/36Ar ratios that are mainly in the range of air and air-saturated water and are similar to mid-crustal rocks and fluids from other settings. The uniformly low 40Ar/36Ar values (<2,200) and extremely variable Br/Cl and I/Cl values do not favour a singular or dominant fluid origin from basement- or mantle-derived magmatic fluids related to A-type magmatism. Instead, the data are compatible with the involvement of metamorphic fluids that have interacted with anatectic melts to variable extents. The ‘metamorphic’ fluids probably represent a mixture of (1) inherited sedimentary pore fluids and (2) locally derived metamorphic volatilisation products. The lowest Br/Cl and I/Cl values and the ultra-high salinities are most easily explained by the dissolution of evaporites. The data demonstrate that externally derived magmatic fluids are not a ubiquitous component of IOCG ore-forming systems, but are compatible with models in which IOCG mineralisation is localised at sites of mixing between fluids of different origin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   
918.
Coastal sea-surface temperature (SST) and sea-surface salinity (SSS), including seasonality, in northwest (NW) Europe during the early phase of the Eemian interglacial ca. 125 ka ago were reconstructed from Littorina littorea (common periwinkle) gastropods. The results were based on intra-annual δ18O analyses in recent and fossil shells, mainly originating from the sea of Kattegat (Sweden) and the English Channel (United Kingdom), and confined to intertidal settings. The Eemian L. littorea shells indicated annual SSTs in the range 8–18°C for the English Channel and 8–26°C for Kattegat. All specimens from the Eemian sites experienced summer SSTs of ca. 1–3°C above recent conditions. The estimated winter SST in the English Channel during the Eemian was comparable to modern measurements of ca. 8°C. However, the Kattegat region displayed Eemian winter SST approximately 8°C warmer than today, and similar to conditions in the western English Channel. The recent-fossil isotope analogue approach indicated high SSS above 35 practical salinity units (psu) for a channel south of England in full contact with the North Atlantic Ocean during the last interglacial. In addition, the Kattegat shells indicated a SSS of ca. 29 psu, which points out a North Sea affinity for this region during the Eemian.  相似文献   
919.
Based on the analysis of siderite distribution,occurrence,chemical compositionk,structureal characteristics,carbon-oxygen isotopic characteristics and relationship between siderite and hematite,this paper presents a systematic study of siderite in the region studied.suggesting that the siderite in the Xuanlong area genetically resulted from organically reduced primary hematite during the diagenesis.The ferric and ferrous relations directly depend on organic contents.In the presence of organic matter ferrous iron can be converted to ferric iron through or ganic reduction.The above conclusion has also been proved by organic geochemistry.data.  相似文献   
920.
汉诺坝玄武岩中辉石岩类包体Nd、Sr、Pb同位素及其成因信息   总被引:13,自引:1,他引:13  
对汉诺坝地区的12个辉石岩和1个麻粒岩包体进行了Nd、Sr、Pb同位素测定,发现辉石岩组成有很大变化,143Nd/144Nd比值为0.51160—0.51314,87Sr/86Sr比值为0.7029—0.7086,206Pb/204Pb比值为15.942—18.683,207Pb/204Pb比值为15.264—15.569,208Pb/204Pb比值为36.213—38.744,显示了其复杂成因q推测具有高Sr、低Nd和低Pb同位素组成的辉石岩是地幔早期富集的产物,与麻粒岩、辉长岩包体有类似成因;具有弱至中等亏损的Nd、Sr同位素和高放射成因Pb的辉石岩是亏损地幔近期富集或交代的产物  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号