首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   13篇
  国内免费   7篇
测绘学   54篇
大气科学   2篇
地球物理   19篇
地质学   25篇
海洋学   3篇
综合类   24篇
自然地理   37篇
  2023年   2篇
  2022年   8篇
  2021年   10篇
  2020年   11篇
  2019年   8篇
  2018年   14篇
  2017年   22篇
  2016年   12篇
  2015年   10篇
  2014年   6篇
  2013年   12篇
  2012年   8篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1990年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
71.
广州市海珠区高密度城区扩展SLEUTH模型模拟   总被引:14,自引:0,他引:14  
高密度城区是城市的核心区,也是城区扩展的源,对该区域的精确识别以及扩展模拟研究,具有重要的意义与价值。以广州市海珠区1979、1990、2000、2008 年4 期Landsat 影像为数据源,运用非渗透表面端元选取模型(V-I-S) 与归一化混合光谱分析模型(NSMA) 相结合的方法,辅以单窗算法反演地表温度数据(LST),高精度提取非渗透表面丰度,进而设置合适阈值表征研究区高密度城区范围。在此基础上基于SLEUTH模型设置4 种场景模拟和预测海珠区高密度城区扩展,并用景观指数分析方法对研究区1979-2050 年长达70 年的空间扩展状况进行分析。主要结论为:① SLEUTH模型同样适用于小尺度区域的扩展模拟。② SLEUTH模型模拟中基于自然、人文以及城市扩展内在动力机制等条件参数的设置,促使模拟结果精度更高。③ SLEUTH模型模拟结果表明,自1979 至今,海珠区高密度城区以较快扩展速率扩张,尤以1990-2004 年间变动增长最快;未来的20 年其增长速率减缓,并于2030 年前后趋于稳定。这种扩张格局与变化状况与研究区产业结构、经济政策、土地规划决策等因素密不可分。  相似文献   
72.
库岸边坡中的地下水对其稳定性起决定作用,然而目前却没有统一的公式用来计算岸坡中的浸润线.为此,根据三峡库区广泛存在的隔水底板倾斜的层状非均质岸坡建立了基本模型,求得了稳定渗流和非稳定渗流两种情况下,库水位下降时岸坡中浸润线的解析解.同时,结合算例进行了分析,证明该方法在实际工程中具有指导意义.  相似文献   
73.
Soil, as one of the three basic biophysical components, has been understudied using remote sensing techniques compared to vegetation and impervious surface areas (ISA). This study characterized land surfaces based on the brightness–darkness–greenness model. These three dimensions, brightness, darkness, and greenness, were represented by the first Tasseled Cap Transformation (TC1), Normalize Difference Snow Index (NDSI), and Normalized Difference Vegetation Index (NDVI), respectively. The Ratio Index for Bright Soil (RIBS) was developed based on TC1 and NDSI, and the Product Index for Dark Soil (PIDS) was established by TC1 and NDVI. Their applications to the Landsat 8 Operational Land Imager images and 500 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) in China revealed the efficiency. The two soil indices proficiently highlighted soil covers with consistently the smallest values, due to larger TC1 and smaller NDSI values in bright soil, and smaller NDVI and TC1 values in dark soil. The RIBS is capable of distinguishing bright soil from ISA without masking vegetation and water body. The spectral separability bright soil and ISA were perfect, with a Jeffries–Matusita distance of 1.916. And the PIDS was the only soil index that could discriminate dark soil from other land covers including ISA. The soil areas in China were classified using a simple threshold method based on MODIS images. An overall accuracy of 94.00% was obtained, with the kappa index of 0.8789. This study provided valuable insights into developing indices for characterizing land surfaces from different perspectives.  相似文献   
74.
城市遥感是当前遥感技术应用的一个重要领域.随着我国新型城镇化过程的推进,遥感技术将在城市生态建设、国土空间开发、资源环境承载能力监测等方面发挥重要作用,成为城市规划管理重要的信息源.本文在总结国内外城市遥感研究内容的基础上,重点对城市遥感若干重要方向的发展进行了分析,在此基础上构建出一个地理学视角的城市遥感研究框架,结合典型实例从结构与格局、要素与作用、变化与过程、功能与响应4个方面进一步探讨了城市遥感研究的发展.最后,结合国家需求和技术发展,对城市遥感今后的发展从数据源、研究对象、应用主题、研究目标、技术方法等方面进行了展望.  相似文献   
75.
Impervious surface (IS) is often recognized as the indicator of urban environmental changes. Numerous research efforts have been devoted to studying its spatio-temporal dynamics and ecological effects, especially for the IS in Beijing metropolitan region. However, most previous studies primarily considered the Beijing metropolitan region as a whole without considering the differences and heterogeneity among the function zones. In this study, the subpixel impervious surface results in Beijing within a time series (1991, 2001, 2005, 2011 and 2015) were extracted by means of the classification and regression tree (CART) model combined with change detection models. Then based on the method of standard deviation ellipse, Lorenz curve, contribution index (CI) and landscape metrics, the spatio-temporal dynamics and variations of IS (1991, 2001, 2011 and 2015) in different function zones and districts were analyzed. It is found that the total area of impervious surface in Beijing increased dramatically during the study period, increasing about 144.18%. The deflection angle of major axis of standard deviation ellipse decreased from 47.15° to 38.82°, indicating the major development axis in Beijing gradually moved from northeast-southwest to north-south. Moreover, the heterogeneity of impervious surface’s distribution among 16 districts weakened gradually, but the CI values and landscape metrics in four function zones differed greatly. The urban function extended zone (UFEZ), the main source of the growth of IS in Beijing, had the highest CI values. Its lowest CI value was 1.79 that is still much higher than the highest CI value in other function zones. The core function zone (CFZ), the traditional aggregation zone of impervious surface, had the highest contagion index (CONTAG) values, but it contributed less than UFEZ due to its small area. The CI value of the new urban developed zone (NUDZ) increased rapidly, and it increased from negative to positive and multiplied, becoming an important contributor to the rise of urban impervious surface. However, the ecological conservation zone (ECZ) had a constant negative contribution all the time, and its CI value decreased gradually. Moreover, the landscape metrics and centroids of impervious surface in different density classes differed greatly. The high-density impervious surface had a more compact configuration and a greater impact on the eco-environment.  相似文献   
76.
Associated with the rapid economic development of China, the level of urbanization is becoming a serious concern. Harbin, the capital city of Heilongjiang Province, China and one of the political, economic, cultural, and transportation centers of the northeastern region of China, has experienced rapid urbanization recently. To examine the spatial patterns of long-term urbanization and explore its driving forces, we employed the impervious surface fraction derived from remote sensing image as a primary indicator. Specifically, urban impervious surface information for the central city of Harbin in 1984, 1993, 2002, and 2010 was extracted from Landsat Thematic Mapper image using a Linear Spectral Mixture Analysis (LMSA). Then, the spatial and temporal variation characteristics and the driving factors of percent impervious surface area (ISA) changes were analyzed throughout this 26-year period (1984 to 2010). Analysis of results suggests that: (1) ISAs in the central city of Harbin constantly increased, particularly from 1993 to 2010, a rapid urbanization period; (2) the gravity center of impervious surface area in the central city was located in Nangang District in 1984, moving southeast from 1984 to 1993, northwest from 1993 to 2002, and continuing toward the southeast from 2002 to 2010; and (3) the urban growth of the central city can be characterized as edge-type growth.  相似文献   
77.
Development of Xiong'an New District (XND) is integral to the implementation of the Beijing-Tianjin-Hebei (BTH) Integration Initiative. It is intended to ease the non-capital functions of Beijing, optimize regional spatial patterns, and enhance ecosystem services and living environment in this urban agglomeration. Applying multi-stage remote sensing (RS) images, land use/cover change (LUCC) data, ecosystem services assessment data, and high-precision urban land-cover information, we reveal the regional land-cover characteristics of this new district as well as across the planned area of the entire BTH urban agglomeration. Corresponding ecological protection and management strategies are also proposed. Results indicated that built-up areas were rapidly expanding, leading to a continuous impervious surface at high density. Urban and impervious surface areas (ISAs) grew at rates 1.27 and 1.43 times higher than that in the 2000s, respectively, seriously affecting about 15% area of the sub-basins. Construction of XND mainly encompasses Xiongxian, Rongcheng, and Anxin counties, areas which predominantly comprise farmland, townships and rural settlements, water, and wetland ecosystems. The development and construction of XND should ease the non-capital functions of Beijing, as well as moderately control population and industrial growth. Thus, this development should be included within the national ‘sponge city’ construction pilot area in early planning stages, and reference should be made to international low-impact development modes in order to strengthen urban green infrastructural construction. Early stage planning based on the existing characteristics of the underlying surface should consider the construction of green ecological patches and ecological corridors between XND and the cities of Baoding, Beijing, and Tianjin. The proportion of impervious surfaces should not exceed 60%, while that of the core area should not exceed 70%. The development of XND needs to initiate the concept of ‘planning a city according to water resource amount’ and incorporate rainwater collection and recycling.  相似文献   
78.
盘龙江子流域不透水表面扩张模拟   总被引:1,自引:0,他引:1  
为促进盘龙江子流域的城镇化进程及保护水环境,该文模拟预测了该地区不透水表面的时空格局:通过分析流域不透水表面扩张的影响因子,建立了智能体分类体系及行为与决策规则;构建了流域的不透水表面变化模拟模型,模拟出流域2002—2013年的土地利用变化,并且验证了其模拟精度;在此基础上模拟预测了盘龙江流域2014—2020年间的不透水表面扩张趋势。研究结果表明利用智能体建模方法较为适合模拟滇池流域盘龙江子流域不透水表面的扩张过程。  相似文献   
79.
This paper describes the use of a continuous streamflow model to examine the effects of climate and land use change on flow duration in six urbanizing watersheds in the Maryland Piedmont region. The hydrologic model is coupled with an optimization routine to achieve an agreement between observed and simulated streamflow. Future predictions are made for three scenarios: future climate change, land use change, and jointly varying climate and land use. Future climate is modelled using precipitation and temperature predictions for the Canadian Climate Centre (CCC) and Hadley climate models. Results show that a significant increase in temperature under the CCC climate predictions produces a decreasing trend in low flows. A significant increasing trend in precipitation under the Hadley climate predictions produces an increasing trend in peak flows. Land use change by itself, as simulated by an additional 10% increase in imperviousness (from 20·5 to 30·5%), produces no significant changes in the simulated flow durations. However, coupling the effects of land use change with climate change leads to more significant decreasing trends in low flows under the CCC climate predictions and more significant increasing trends in peak flows under Hadley climate predictions than when climate change alone is employed. These findings indicate that combined land use and climate change can result in more significant hydrologic change than either driver acting alone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
80.
Two‐component hydrograph separation was performed on 19 low‐to‐moderate intensity rainfall events in a 4·1‐km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12–46 µS/cm) and pre‐event streamwater EC values (520–1297 µS/cm). While new water accounted for most of the increased discharge during storms (61–117%), the contribution of new water to total discharge during events was typically lower (18–78%) and negatively correlated with antecedent stream discharge (r2 = 0·55, p < 0·01). The amount of new water was positively correlated with total rainfall (r2 = 0·77), but hydrograph separation results suggest that less than half (9–46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non‐conservative tracers (EC and Si) and a conservative isotopic tracer (δD) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer‐based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non‐point‐source pollutant loading to urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号