首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2048篇
  免费   524篇
  国内免费   597篇
测绘学   76篇
大气科学   419篇
地球物理   367篇
地质学   801篇
海洋学   845篇
天文学   48篇
综合类   179篇
自然地理   434篇
  2024年   18篇
  2023年   38篇
  2022年   85篇
  2021年   111篇
  2020年   95篇
  2019年   111篇
  2018年   107篇
  2017年   95篇
  2016年   111篇
  2015年   143篇
  2014年   136篇
  2013年   167篇
  2012年   117篇
  2011年   105篇
  2010年   92篇
  2009年   129篇
  2008年   133篇
  2007年   144篇
  2006年   118篇
  2005年   141篇
  2004年   105篇
  2003年   112篇
  2002年   110篇
  2001年   84篇
  2000年   80篇
  1999年   74篇
  1998年   59篇
  1997年   54篇
  1996年   47篇
  1995年   36篇
  1994年   40篇
  1993年   26篇
  1992年   40篇
  1991年   22篇
  1990年   24篇
  1989年   13篇
  1988年   14篇
  1987年   10篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
排序方式: 共有3169条查询结果,搜索用时 485 毫秒
131.
A coupled ocean-ice-wave model is used to study ice-edge jet and eddy genesis during surface gravity wave dissipation in a frazil-pancake ice zone. With observational data from the Beaufort Sea, possible wave dissipation processes are evaluated using sensitivity experiments. As wave energy dissipated, energy was transferred into ice floe through radiation stress. Later, energy was in turn transferred into current through ocean-ice interfacial stress. Since most of the wave energy is dissipated at the ice edge, ice-edge jets, which contained strong horizontal shear, appeared both in the ice zone and the ocean. Meanwhile, the wave propagation direction determines the velocity partition in the along-ice-edge and cross-ice-edge directions, which in turn determines the strength of the along-ice-edge jet and cross-ice-edge velocity. The momentum applied in the along-ice-edge(cross-ice-edge)direction increased(decreased) with larger incident angle, which is favorable condition for producing stronger mesoscale eddies, vice versa. The dissipation rate increases(decreases) with larger(smaller) wavenumber, which enhances(reduces) the jet strength and the strength of the mesoscale eddy. The strong along-ice-edge jet may extend to a deep layer(> 200 m). If the water depth is too shallow(e.g., 80 m), the jet may be largely dampened by bottom drag, and no visible mesoscale eddies are found. The results suggest that the bathymetry and incident wavenumber(magnitude and propagation direction) are important for wave-driven current and mesoscale eddy genesis.  相似文献   
132.
利用欧洲中心气候再分析资料和美国国家冰雪数据中心北极海冰面积资料,分析了夏季北极海冰面积与前期大气经向热量输送年际变化的联系。结果表明:6月北半球中高纬大气的经向热量输送以瞬变热量形式为主,其中巴芬湾西部(B区)和格陵兰岛东部(G区)是瞬变热量向极区传输的两个通道,二者之间存在反位相的协同变化,且这种协同变化与夏季北极海冰面积变化密切相关。可能的机制为:6月,AD、AO和NAO三种北极大气环流型能够引起巴芬湾西部和格陵兰岛东部瞬变热量输送的协同变化,这种协同变化通过涡旋动力作用激发夏季极区大气表现为AD异常,同时影响途经区域的气温,从而通过热动力作用影响夏季北极海冰。将向极区输送的热量称为暖输送,从极区输出的热量为冷输送,则上述两个区域的瞬变热量协同输送可分为三种情况:B暖G冷、B冷G暖、B和G均冷,而B和G均暖的情况十分罕见。当B区向极区输入、G区输出热量时,有利于太平洋扇区和喀拉海的海冰偏少;当G区输入、B区输出热量时,利于喀拉海和拉普捷夫海海冰偏少;当B区和G区均输出热量时,利于波佛特海南部、喀拉海和拉普捷夫海海冰偏多,反之则相反。  相似文献   
133.
The extremely low temperature, high humidity and limited power supply pose considerable challenges when using spectrometers within the Arctic sea ice. The feasibility of using a miniature low-power near-infrared spectrometer module to measure solar radiation in Arctic sea ice environments was investigated in this study.Temperature and integration time dependences of the spectrometer module were examined over the entire target operating range of –50℃ to 30℃, well below the specified operating range of this spectrometer. Using these observations, a dark output prediction model was developed to represent dark output as a function of temperature and integration time. Temperature-induced biases in the saturation output and linear operating range of the spectrometer were also determined. Temperature and integration time dependences of the signal output were evaluated. Two signal output correction models were developed and compared, to convert the signal output at any temperature within the operating temperature range and integration time to that measured at the reference temperature and integration time. The overall performance of the spectrometer was evaluated by integrating it into a refined fiber optic spectrometry system and measuring solar irradiance distribution in the ice cover with thickness of 1.85 m in the Arctic during the 9th Chinese National Arctic Research Expedition. The general shape of the measured solar irradiance above the snow surface agreed well with that measured by other commercial oceanographic spectroradiometers. The measured optical properties of the sea ice were generally comparable to those of similar ice measured using other instruments. This approach provides a general framework for assessing the feasibility of using spectrometers for applications in cold environments.  相似文献   
134.
为了更有效地将卫星数据应用于北极航行导航,被动微波(PM)产品的海冰密集度(SIC)与从中国北极科学考察中收集到的船基目视观测(OBS)资料进行了比较。在2010、2012、2014、2016和2018年的北极夏季总共收集了3667组目测数据。PM SIC取自基于SSMIS传感器的NASA-Team(NT)、Bootstrap(BT)以及Climate Data Record(CDR)算法和基于AMSR-E/AMSR-2传感器的BT、enhanced NT(NT2)以及ARTIST Sea Ice(ASI)算法。使用PM SIC的日算术平均值和OBS SIC的日加权平均值进行比较。比较了PM SIC和OBS SIC之间的相关系数,偏差和均方根偏差,包括总体趋势以及在轻度/普通/严重冰况下的情况。使用OBS数据,浮冰尺寸和冰厚对不同PM产品SIC反演的影响可以通过计算浮冰尺寸编码和冰厚的日加权平均值来评估。我们的结果显示相关系数的范围为0.89(AMSR-E/AMSR-2 NT2)到0.95(SSMIS NT),偏差的范围为-3.96%(SSMIS NT)到12.05%(AMSR-E/AMSR-2),均方根偏差的范围为10.81%(SSMIS NT)到20.15%(AMSR-E/AMSR-2 NT2)。浮冰尺寸对PM产品的SIC反演有显著的影响,大多数PM产品倾向于在小浮冰尺寸情况下低估SIC,而在大浮冰尺寸情况下高估SIC。超过30 cm的冰厚对于PM产品的SIC反演没有明显影响。总体来看,在北极夏季,SSMIS NT SIC与OBS SIC之间有着最好的一致性,而AMSR-E/AMSR-2 NT2 SIC与OBS SIC的一致性最差。  相似文献   
135.
青藏高原西部阿汝冰芯记录的近100 a气温变化研究   总被引:2,自引:2,他引:0  
以2017年9月钻取自青藏高原西部阿汝冰崩区长度55.29 m的阿汝冰芯为研究对象,通过冰芯δ18O记录与Nye模型重建了冰芯上部17.87 m的时间序列是1917—2016年.结合冰芯邻近的改则、狮泉河气象站1973—2016年夏季平均气温数据,通过相关性分析及线性回归法、Mann-Kendall(M-K)检验分析,...  相似文献   
136.
根据Aqua MODIS 2级云产品和Cloudsat的2级产品资料,结合降水数据和MODIS L1B级辐射率数据,对发生在京津冀地区夏季的三次强降水过程中冰云的宏微观物理量的特征进行分析,并探究这些物理量和降水强度的关系。结果表明:在水平分布中,强降水过程中降水强度高值区内云相为冰云,冰云云顶高度在8~17 km,冰云粒子有效半径、冰云光学厚度、冰水路径分别最高可达60 μm、 150、 5 000 g?m-2;冰云光学厚度、冰水路径、冰云云顶高度随降水强度增大而增大。在垂直分布中,冰云主要分布在3.5 km以上,发生强降水站点的冰云为深对流云,冰云粒子有效半径、冰水含量、冰云粒子数浓度分别最高可达150 μm、 3 000 mg?m-3 、 500 L-1;冰云粒子有效半径高值区存在于云层中下部,且随高度上升而减小,冰云粒子数浓度高值区存在于云层中上部,且随高度上升而增加,冰水含量高值区则存在于云层中部;冰云粒子有效半径、冰水含量、冰云粒子数浓度在9 km以上随降水强度增大而增大。  相似文献   
137.
In this study, we used Landsat images and meteorological data to examine the spatiotemporal distribution and variability of sea ice in Jiaozhou Bay(JZB) between 1986 and 2016. The results show that JZB is not always covered by sea ice in winter, but in some extreme cases, sea ice has covered more than one-third of the sea area of the bay. Sea ice in JZB has generally formed between January 1 and February 5, primarily along the coast, and gradually expanding to the central area of the bay. Both meteorological and artificial factors have played important roles in modulating the sea ice distribution. We found sea ice coverage to have been strongly correlated with the accumulated freezing-degree days nine days before the occurrence of sea ice(R2 = 0.767). North-northwest surface winds have dominated the freezing period of sea water in the JZB, and wind speed has exerted a more significant influence on the formation of sea ice when the sea ice coverage has been generally small. Additionally, artificial factors began to affect the expansion of sea ice in JZB since 2007. The construction of the Jiao-Zhou-Bay Bridge(JZBB) is believed to have retarded water flow and reduced the tidal prism, thereby leading to the formation of an ice bridge along the JZBB, which effectively prevents the southward expansion of sea ice.  相似文献   
138.
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.  相似文献   
139.
Sea ice disaster is one of the principal natural hazards that affect some coastal areas of China,and the formation of ice cover in a wave field has important characteristics.However,analysis of the mechanism in which waves affect the thermodynamic process of sea ice is lacking,and the influence of waves is not taken into consideration in numerical models of sea ice,largely because of a lack of simultaneous observations of waves and sea ice.Using observational data of the sea ice cycle in the coastal waters of Liaodong Bay(China),we analyzed the characteristics of hydrology,meteorology,and sea ice thickness during the formation of sea ice,and explored the changes in the interrelationships among heat fluxes,waves,and sea ice under actual sea conditions.The results could provide a decision-making support as a reference to the establishment and improvement of China's early waming system to sea ice disasters,and the protection of ice drilling operations and production platform safety.  相似文献   
140.
Qi  Miaomiao  Yao  Xiaojun  Li  Xiaofeng  Duan  Hongyu  Gao  Yongpeng  Liu  Juan 《地理学报(英文版)》2019,29(1):115-130
Journal of Geographical Sciences - Lake ice phenology is considered a sensitive indicator of regional climate change. We utilized time series information of this kind extracted from a series of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号