首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1208篇
  免费   287篇
  国内免费   93篇
测绘学   23篇
大气科学   99篇
地球物理   745篇
地质学   448篇
海洋学   32篇
天文学   2篇
综合类   35篇
自然地理   204篇
  2024年   7篇
  2023年   10篇
  2022年   25篇
  2021年   67篇
  2020年   100篇
  2019年   63篇
  2018年   81篇
  2017年   92篇
  2016年   73篇
  2015年   83篇
  2014年   94篇
  2013年   221篇
  2012年   69篇
  2011年   63篇
  2010年   55篇
  2009年   52篇
  2008年   47篇
  2007年   47篇
  2006年   50篇
  2005年   45篇
  2004年   49篇
  2003年   31篇
  2002年   29篇
  2001年   33篇
  2000年   15篇
  1999年   19篇
  1998年   14篇
  1997年   21篇
  1996年   11篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
991.
Influence of rainfall spatial variability on flood prediction   总被引:9,自引:0,他引:9  
This paper deals with the sensitivity of distributed hydrological models to different patterns that account for the spatial distribution of rainfall: spatially averaged rainfall or rainfall field. The rainfall data come from a dense network of recording rain gauges that cover approximately 2000 km2 around Mexico City. The reference rain sample accounts for the 50 most significant events, whose mean duration is about 10 h and maximal point depth 170 mm. Three models were tested using different runoff production models: storm-runoff coefficient, complete or partial interception. These models were then applied to four fictitious homogeneous basins, whose sizes range from 20 to 1500 km2. For each test, the sensitivity of the model is expressed as the relative differences between the empirical distribution of the peak flows (and runoff volumes), calculated according to the two patterns of rainfall input: uniform or non-uniform. Differences in flows range from 10 to 80%, depending on the type of runoff production model used, the size of the basin and the return period of the event. The differences are generally moderate for extreme events. In the local context, this means that uniform design rainfall combining point rainfall distribution and the probabilistic concept of the areal reduction factor could be sufficient to estimate major flood probability. Differences are more significant for more frequent events. This can generate problems in calibrating the hydrological model when spatial rainfall localization is not taken into account: a bias in the estimation of parameters makes their physical interpretation difficult and leads to overestimation of extreme flows.  相似文献   
992.
Abstract

The Hubert segmentation procedure has been applied to historical series of annual average discharges of the Niger River at Koulikoro (Mali), Niamey (Niger) and Lokoja (Nigeria) stations. The breaks, especially those identified at Koulikoro and Niamey, match well with those identified in the Senegal River series at Bakel using the same procedure. Lokoja departs from this regional pattern, as it shows in the late 1980s a return to wetter conditions much earlier than the other three stations. The magnitudes of the variation of the inter-annual means between the alternating wet and dry periods are significant and similar. These results seem to suggest that phenomena causing non-stationarity in hydrological series can have a sub-continental impact or, in contrast, may be more limited in their spatial coverage.

Editor Z.W. Kundzewicz; Associate editor H. Aksoy

Citation Abrate, T., Hubert, P., and Sighomnou, D., 2013. A study on hydrological series of the Niger River. Hydrological Sciences Journal, 58 (2), 271–279.  相似文献   
993.
In practice, rainfall–runoff relationships are achieved through a simply defined runoff coefficient concept that is widely used in many engineering hydrological designs in urban and rural areas. The simplicity of the method, with the sole requirement of runoff coefficient assessment, is the main attractiveness, in addition to its successful prediction of average runoff rates for a given rainfall record. Unfortunately, in the classical regression approach of the rainfall–runoff relationship, internal variabilities are not taken into consideration explicitly. The runoff coefficient is considered a constant value, and it is used without distinction of antecedent conditions for the calculation of runoff from the rainfall record. In this paper, various other uncertainty embedded versions of the runoff coefficient, and hence rainfall–runoff formulation, are presented in terms of statistics, probability, perturbation and, finally, fuzzy system modelling. It is concluded that the fuzzy logic approach yields the least relative error among the various alternative runoff calculation methods; therefore, it is recommended for use in future studies. The application of various alternatives is presented for two monthly rainfall‐runoff records around Istanbul, Turkey. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
994.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   
995.
ABSTRACT

Multisource rainfall products can be used to overcome the absence of gauged precipitation data for hydrological applications. This study aims to evaluate rainfall estimates from the Chinese S-band weather radar (CINRAD-SA), operational raingauges, multiple satellites (CMORPH, ERA-Interim, GPM, TRMM-3B42RT) and the merged satellite–gauge rainfall products, CMORPH-GC, as inputs to a calibrated probability distribution model (PDM) on the Qinhuai River Basin in Nanjing, China. The Qinhuai is a middle-sized catchment with an area of 799 km2. All sources used in this study are capable of recording rainfall at high spatial and temporal resolution (3 h). The discrepancies between satellite and radar data are analysed by statistical comparison with raingauge data. The streamflow simulation results from three flood events suggest that rainfall estimates using CMORPH-GC, TRMM-3B42RT and S-band radar are more accurate than those using the other rainfall sources. These findings indicate the potential to use satellite and radar data as alternatives to raingauge data in hydrological applications for ungauged or poorly gauged basins.  相似文献   
996.
ABSTRACT

With the rapid economic development and urbanization in Taihu Basin (eastern China), the river system has decayed and the connectivity of rivers and lakes has weakened, resulting in frequent floods. The impact of changes in river system structure on hydrological processes in the plain river network area was analysed against a background of urbanization. An indicator system was built to describe the quantitative, morphological and spatial structure of the river system. Analysis of the change in annual average and extreme water levels revealed the influencing mechanism of the changes in river system structure on the hydrological processes. The results indicate a decreasing tendency in the density of the river system in the study area, with a reduction in water surface ratio by about 20% in the past 50 years. Since the 1960s, the maximum and annual average water levels have increased. The degree of change in the mean monthly, annual lowest and annual highest water levels was great, with that in the non-flood season being higher than in the flood season. The decrease in the number of rivers directly reduced the storage and adjustable capacity of the basin.  相似文献   
997.
A method to build synthetic hydrographs is introduced, based on 1300 gauging stations in France and Switzerland, covering a wide range of size and climatology. For each station, an average of two floods per year are selected by a peak-over-threshold method, providing about 69?000 hydrographs. For a given catchment, some “donor stations” are selected with criteria of proximity in space, size and runoff production. These donors provide hundreds of hydrographs which can complement the ones recorded locally, or replace them if no hydrograph is available. With this subset of hydrographs, one can estimate the catchment’s average peak-to-volume ratio of floods, and build the corresponding median hydrograph. Another application is, for a given daily discharge sequence (being observed or simulated), to generate a relevant synthetic hydrograph by combining appropriate hydrographs of the subset. These methods are assessed by performing a jack-knife validation on a wide dataset of stations.  相似文献   
998.
999.
利用鲇鱼山水库1975-1999年的小时降雨、蒸发和入库洪水资料,对建立的蓄满一超渗兼容模型与人工神经网络模型参数进行了率定和检验。分析结果表明,整体上两个模型的率定和检验结果都在评定精度以内,合格率分别为72.22%与83.33%,具有一定的可靠性与预测性。蓄满-超渗兼容模型在整体流量相对误差上要优于神经网络模型;在单场洪水过程及洪峰误差与峰现时差上,神经网络模型模拟得更准确。因此,蓄满-超渗兼容模型较神经网络模型更具有水文基础及物理意义,并且可以作中长期预报。  相似文献   
1000.
As a response to climate change, shifting rainfall trends including increased multi-year droughts and an escalation in extreme rainfall events are expected in the Middle East. The purpose of this study is to evaluate the potential impact of these shifting trends on stream flow in the Jordan River and its tributaries. We use a non-homogeneous hidden Markov model to generate artificial daily rainfall simulations which capture independently shifting trends of increased droughts and escalated extreme. These simulations are then used as input into a hydrological model calibrated for the upper catchments of the Jordan River to compare the impact on stream flow and water resources between the different rainfall scenarios. We compare the predicted baseflow and surface flow components of the tested watersheds, and find that while an increase in extreme rainfall events increases the intensity and frequency of surface flow, the over all flow to the Jordan River, and the characteristics of the baseflow in the Jordan River system is not largely impacted. In addition, though it has been suggested that in the case of a multi-year drought the karstic nature of the aquifer might lead to more intense, non-linear reductions in stream flow, here we quantify and show the conditions when annual stream flow reduce linearly with rainfall, and when these relations will become non-linear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号