首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3811篇
  免费   1200篇
  国内免费   1890篇
测绘学   54篇
大气科学   4107篇
地球物理   590篇
地质学   1002篇
海洋学   161篇
天文学   11篇
综合类   151篇
自然地理   825篇
  2024年   92篇
  2023年   168篇
  2022年   238篇
  2021年   286篇
  2020年   289篇
  2019年   351篇
  2018年   252篇
  2017年   293篇
  2016年   249篇
  2015年   280篇
  2014年   361篇
  2013年   423篇
  2012年   369篇
  2011年   347篇
  2010年   253篇
  2009年   292篇
  2008年   259篇
  2007年   350篇
  2006年   288篇
  2005年   237篇
  2004年   178篇
  2003年   185篇
  2002年   124篇
  2001年   125篇
  2000年   125篇
  1999年   73篇
  1998年   69篇
  1997年   65篇
  1996年   54篇
  1995年   57篇
  1994年   46篇
  1993年   27篇
  1992年   22篇
  1991年   18篇
  1990年   9篇
  1989年   17篇
  1988年   15篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   3篇
排序方式: 共有6901条查询结果,搜索用时 0 毫秒
991.
A nonparametric resampling technique for generating daily weather variables at a site is presented. The method samples the original data with replacement while smoothing the empirical conditional distribution function. The technique can be thought of as a smoothed conditional Bootstrap and is equivalent to simulation from a kernel density estimate of the multivariate conditional probability density function. This improves on the classical Bootstrap technique by generating values that have not occurred exactly in the original sample and by alleviating the reproduction of fine spurious details in the data. Precipitation is generated from the nonparametric wet/dry spell model as described in Lall et al. [1995]. A vector of other variables (solar radiation, maximum temperature, minimum temperature, average dew point temperature, and average wind speed) is then simulated by conditioning on the vector of these variables on the preceding day and the precipitation amount on the day of interest. An application of the resampling scheme with 30 years of daily weather data at Salt Lake City, Utah, USA, is provided.  相似文献   
992.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
993.
Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro-forested sub-catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream-aquifer connectivity in these mixed-use watersheds. A study was implemented, including eight stream and co-located shallow groundwater monitoring sites, in a small sub-catchment of the Chesapeake Bay watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation-receiving days (i.e., 24-hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 vs. 0.01 m and rainfall-normalized level change estimate of 3.81 vs. 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub-catchments (n = 8; p < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub-catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from −0.50 to 3.90 s·cm−1, indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modelling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub-catchment spatial variability in stream-aquifer gradients with co-located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation-receiving days, which may hold important implications for modelling hydrologic and biogeochemical fate and transport processes in small, agro-forested catchments.  相似文献   
994.
The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF-Hydro model. WRF and WRF-Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface-atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.  相似文献   
995.
Assessments of water resources by using macro‐scale models tend to be conducted at the continental or large catchment scale. However, security of freshwater supplies is a local issue and thus necessitates study at such a scale. This research aims to evaluate the suitability of the Land Processes and eXchanges dynamic global vegetation model (LPX‐DGVM) for simulating runoff for small catchments in the UK. Simulated annual and monthly runoff is compared against the National River Flow Archive streamflow observations from 12 catchments of varying size (500–10 000 km2) and climate regimes. Results show that LPX reproduces observed inter‐annual and intra‐annual runoff variability successfully in terms of both flow timings and magnitudes. Inter‐annual variability in flow timings is simulated particularly well (as indicated by Willmott's index of agreement values of ≥0.7 for the majority of catchments), whereas runoff magnitudes are generally slightly overestimated. In the densely populated Thames catchment, these overestimations are partly accounted for by water consumption. Seasonal variability in runoff is also modelled well, as shown by Willmott's index of agreement values of ≥0.9 for all but one catchment. Absence of river routing and storage from the model, in addition to precipitation uncertainties, is also suggested as contributing to simulated runoff discrepancies. Overall, the results show that the LPX‐DGVM can successfully simulate runoff processes for small catchments in the UK. This study offers promising insights into the use of global‐scale models and datasets for local‐scale studies of water resources, with the eventual aim of providing local‐scale projections of future water distributions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
996.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
997.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
Spatiotemporal trends in precipitation may influence vegetation restoration, and extreme precipitation events profoundly affect soil erosion processes on the Loess Plateau. Daily data collected at 89 meteorological stations in the area between 1957 and 2009 were used to analyze the spatiotemporal trends of precipitation on the Loess Plateau and the return periods of different types of precipitation events classified in the study. Nonparametric methods were employed for temporal analysis, and the Kriging interpolation method was employed for spatial analysis. The results indicate a small decrease in precipitation over the Loess Plateau in last 53 years (although a Mann–Kendall test did not show this decrease to be significant), a southward shift in precipitation isohyets, a slightly delayed rainy season, and prolonged return periods, especially for rainstorm and heavy rainstorm events. Regional responses to global climate change have varied greatly. A slightly increasing trend in precipitation in annual and sub‐annual series, with no obvious shift of isohyets, and an evident decreasing trend in extreme precipitation events were detected in the northwest. In the southeast, correspondingly, a more seriously decreasing trend occurred, with clear shifts of isohyets and a slightly decreasing trend in extreme precipitation events. The result suggests that a negative trend in annual precipitation may have led to decreased soil erosion but an increase in sediment yield during several extreme events. These changes in the precipitation over the Loess Plateau should be noted, and countermeasures should be taken to reduce their adverse impacts on the sustainable development of the region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
999.
Stable isotopic compositions of precipitation (δ18Op, δ2Hp and d-excessp) and atmospheric vapour (δ18Ov, δ2Hv and d-excessv) with high spatial–temporal resolution are crucial in revealing hydrologic cycle. Based on the variation characteristics of δ18Op18Ov, δ2Hp2Hv and d-excessp/d-excessv in the headwaters of the Shule River (HSR) on hourly and daily scales from June to September 2018, this study analysed the relationships between δ18Op2Hp and δ18Ov2Hv combined with the equilibrium fractionation model, as well as δ18Op18Ov and meteorological factors. The slopes of local meteoric water line (LMWL) and the δ2Hv18Ov fitting equation were similar (7.96 and 7.94) with both intercepts exceeding 10, reflecting the great contribution of recycling moisture. The values of δ18Ov2Hv were lower than δ18Op2Hp but with consistent variation patterns throughout the period. The equilibrium simulation results suggested that precipitation and atmospheric vapour almost approached isotopic equilibrium state, especially during monsoon intrusion period. Affected by monsoon intrusion, the slopes and intercepts of the LMWLs and the δ2Hv18Ov fitting equations were smaller than those during non-monsoon period and d-excess and δ18O were negatively correlated. Relative humidity had significant negative correlations with δ18Op and δ18Ov in the whole period, however, the positive correlations between δ18Op18Ov and temperature were observed during non-monsoon and monsoon intrusion period, respectively. Our results demonstrated that precipitation and atmospheric vapour isotopic compositions exhibited consistency under the influence of diverse moisture sources, while more complex relationships were found between δ18Op18Ov and meteorological factors. This research provided evidence for using the isotopic compositions of atmospheric vapour to indicate moisture sources, and can improve understanding of the water cycle and eco-hydrological process from the perspective of the interaction between water and gas phases of the inland river basin in northwest China.  相似文献   
1000.
13C of 367 C3 herbaceous plants was measured in loess area in northern China. Their δ13C values vary between −21.7%. and −30.0%., with a mean of −26.7%.. In the center of Loess Plateau (semimoist area) with annual precipitation of 400–600 mm, the δ13 C values of C3 herbaceous plants range from −24.4%. to −28.5%., with a mean of −27.5%.. In the west of Loess Plateau (semiarid and arid area) with annual precipitation less than 400 mm, they range between −21.7%. and −30.0%., with a mean of −26.2%.. Annual precipitation is the main factor that makes δ13C values of C3 herbaceous plants in the west greater than those in the central Loess Plateau. The composition of δ13C in C3 plants increases with deceasing annual precipitation, and the mean change is −49%./100 mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号