首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3356篇
  免费   368篇
  国内免费   371篇
测绘学   663篇
大气科学   159篇
地球物理   383篇
地质学   900篇
海洋学   258篇
天文学   205篇
综合类   290篇
自然地理   1237篇
  2024年   28篇
  2023年   47篇
  2022年   198篇
  2021年   211篇
  2020年   183篇
  2019年   218篇
  2018年   151篇
  2017年   192篇
  2016年   187篇
  2015年   143篇
  2014年   142篇
  2013年   217篇
  2012年   174篇
  2011年   161篇
  2010年   133篇
  2009年   147篇
  2008年   158篇
  2007年   166篇
  2006年   144篇
  2005年   130篇
  2004年   154篇
  2003年   128篇
  2002年   114篇
  2001年   89篇
  2000年   92篇
  1999年   63篇
  1998年   58篇
  1997年   48篇
  1996年   34篇
  1995年   32篇
  1994年   33篇
  1993年   24篇
  1992年   16篇
  1991年   24篇
  1990年   10篇
  1989年   17篇
  1988年   9篇
  1987年   8篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1954年   1篇
排序方式: 共有4095条查询结果,搜索用时 15 毫秒
81.
The high-altitude dayside cusps (both northern and southern) are extremely dynamic regions in geospace. Large diamagnetic cavities with significant fluctuations of the local magnetic field strength have been observed there. These cusp diamagnetic cavities are always there day after day and are as large as 6 RE Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions have been observed to increase by as much as four orders of the magnitude when compared with regions adjacent to the cusp which includes the magnetosheath. Their seed populations are a mixture of ionospheric and solar wind particles. The measured energetic ion fluxes in the high-altitude cusp are higher than that in both the regions upstream and downstream from the bow shock. Turbulent electric fields with an amplitude of about 10 mV/m are also present in the cusp, and a cusp resonant acceleration mechanism is suggested. The observations indicate that the dayside high-altitude cusp is a key region for transferring the solar wind mass, momentum, and energy into the Earth’s magnetosphere.  相似文献   
82.
GIS中矢量与栅格数据模型比较   总被引:4,自引:0,他引:4  
刘晓洁 《吉林地质》2005,24(1):89-91
由于GIS软件的多样性,每种软件都有自己特定的数据模型,从数据结构上来说,矢量和栅格是地理信息系统中两种主要的空间数据结构。本文通过对栅格数据与矢量数据模型的应用比较.对于空间数据从需求分析,以满足对数据信息进行更改、更新、增加或者为了某种特定的需要。  相似文献   
83.
本文以长沙市中医医院的方案设计为例,对如何利用自然环境划分、组织建筑空间以及结合当地人文、地理环境塑造合理的建筑造型进行了详尽的描述。  相似文献   
84.
通过潍坊中医院综合楼的方案设计,探讨了现代医院设计的发展趋势-把人的需求放在首位,既为病人也为医护人员服务,打破过去仅以技术科学为出发点的格局.  相似文献   
85.
86.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
87.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   
88.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
89.
A transversely isotropic multi‐layered half‐space, with axis of material symmetry perpendicular to the free surface, supports a flexible either annular or solid circle foundation. The contact area of the foundation and the half‐space is considered to be both frictionless and tensionless. The foundation is assumed to be affected by a vertical static axisymmetric load. Detailed analysis of the interaction of these two systems with different thickness of layers is the target of this paper. With the use of ring load Green's functions for both the foundation and the continuum half‐space, an integral equation accompanied with some inequalities is introduced to model the complex BVP. With the incorporation of ring‐shape FEM, we are capable of capturing both regular and singular solution smoothly. The validity of the combination of the analytical and numerical method is proved with comparing the results of this paper with a number of benchmark cases of both linear and nonlinear interaction of circular and annular foundation with half‐space. Some new illustrations are presented to portray the aspect of the anisotropy and layering of the half‐space. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
90.
The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号