首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   132篇
  国内免费   261篇
测绘学   72篇
大气科学   96篇
地球物理   230篇
地质学   579篇
海洋学   176篇
天文学   12篇
综合类   28篇
自然地理   73篇
  2024年   5篇
  2023年   16篇
  2022年   28篇
  2021年   39篇
  2020年   44篇
  2019年   39篇
  2018年   35篇
  2017年   38篇
  2016年   42篇
  2015年   47篇
  2014年   53篇
  2013年   63篇
  2012年   54篇
  2011年   55篇
  2010年   44篇
  2009年   51篇
  2008年   58篇
  2007年   57篇
  2006年   73篇
  2005年   54篇
  2004年   43篇
  2003年   34篇
  2002年   27篇
  2001年   38篇
  2000年   40篇
  1999年   28篇
  1998年   26篇
  1997年   32篇
  1996年   24篇
  1995年   11篇
  1994年   17篇
  1993年   11篇
  1992年   7篇
  1991年   12篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1266条查询结果,搜索用时 510 毫秒
561.
The increase of surface runoff at the plot scale caused by soil water repellency is a generally accepted phenomenon. However, to improve the understanding of the effect of water repellency on runoff at the catchment scale, spatio‐temporal dynamics of water repellency have to be analysed in more detail. The experimental setup of this study allowed the investigation of the relationship between water repellency and runoff generation on Quaternary and Tertiary sandy substrates while ensuring similar conditions in terms of terrain characteristics, meteorological and vegetation‐free conditions on both areas. Measurements of water drop penetration time and contact angle were carried out over a period from September 2003 to December 2005. Spatial variability of actual soil water repellency was related to heterogeneity of substrate and geomorphologic units, variations in time were related with the seasons and their meteorological conditions. To relate variable degrees of actual water repellency to surface runoff generation, both variables were measured in parallel at the plot scale (1 m × 1 m) and at the hillslope scale from September 2004 to December 2005. Soil water repellency of the Tertiary sands showed a temporal variability depending on the season, with the highest degree during summer and autumn. Variation of hydrophobicity between the seasons caused higher runoff coefficients in summer and autumn. Spatial heterogeneity of the soil water repellency revealed lower values in fine‐textured erosion rills and higher values for interrills and top areas. The measured runoff coefficients decreased from the scale of microplots to the hillslope scale due to infiltration in hydrophilic rills on the hillslope. The results suggest that improved hydrological modelling approaches on water‐repellent soils can be based on a geomorphological subdivision of the catchment area and seasonally varying infiltration parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
562.
Runoff hydrology has a large historical context concerned with the mechanisms and pathways of how water is transferred to the stream network. Despite this, there has been relatively little application of runoff generation theory to cold regions, particularly the expansive treeless environments where tundra vegetation, permafrost, and organic soils predominate. Here, the hydrological cycle is heavily influenced by 1) snow storage and release, 2) permafrost and frozen ground that restricts drainage, and 3) the water holding capacity of organic soils. While previous research has adapted temperate runoff generation concepts such as variable source area, transmissivity feedback, and fill‐and‐spill, there has been no runoff generation concept developed explicitly for tundra environments. Here, we propose an energy‐based framework for delineating runoff contributing areas for tundra environments. Aerodynamic energy and roughness height control the end‐of‐winter snow water equivalent, which varies orders of magnitude across the landscape. Radiant energy in turn controls snowmelt and ground thaw rates. The combined spatial pattern of aerodynamic and radiant energy control flow pathways and the runoff contributing areas of the catchment, which are persistent on a year‐to‐year basis. While ground surface topography obviously plays an important role in the assessment of contributing areas, the close coupling of energy to the hydrological cycles in arctic and alpine tundra environments dictates a new paradigm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
563.
Analysis of water flow pathways from hillslopes to streams is essential for the optimal protection of water resources as well as for ecohydrological studies. This study addresses runoff generation processes at a hillslope and near‐stream shallow groundwater system in the Black Forest Mountains, southwestern Germany. The changing spatial and temporal flow patterns during differing hydrological situations were examined using a combined hydraulic and hydrochemical approach. Groundwater levels at 10 wells, discharge at a near‐stream saturated area, and several natural tracers (deuterium, dissolved silica, and major anions and cations) were observed at different locations during high and low flows. The importance of the groundwater component during flood formation was clearly demonstrated: its contribution was about 80% during a double peak flood event at the saturated area. In addition, a rapid change of the shallow groundwater levels was observed along two transects of groundwater wells in the floodplain. This led to an enhanced groundwater discharge into the saturated area located at the end of one study transect. The amount of groundwater additionally activated during the event was about 30% of total discharge recorded at the outlet of the saturated area. Two alternative hypotheses are discussed to explain this phenomenon: the establishment of locally confined conditions and the development of a pressure wave (hypothesis A), or the significant change of the three‐dimensional groundwater flow lines that caused a large increase of the groundwater catchment at the saturated area during the investigated event (hypothesis B). Even if the exact flow paths and mechanisms could not be clearly identified, the importance of rapid responding hillslope groundwater was undoubtedly demonstrated by a combination of tracer and hydrometric methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
564.
Based on a plane-parallel isothermal solar model atmosphere permeated by a horizontal magnetic field whose strength is proportional to the square root of the plasma density and in the approximation of a specified field for vertically propagating and nonpropagating magnetoacoustic-gravity waves, we consider the nonlinear interaction between the corresponding disturbances, to within quantities of the second order of smallness. We investigate the efficiency of the nonlinear generation of waves at difference and sum frequencies and of an acoustic flow (wind) as a function of the magnetic-field strength and the excitation frequency of the initial disturbances at the lower atmospheric boundary.  相似文献   
565.
566.
A hybrid model that blends two non‐linear data‐driven models, i.e. an artificial neural network (ANN) and a moving block bootstrap (MBB), is proposed for modelling annual streamflows of rivers that exhibit complex dependence. In the proposed model, the annual streamflows are modelled initially using a radial basis function ANN model. The residuals extracted from the neural network model are resampled using the non‐parametric resampling technique MBB to obtain innovations, which are then added back to the ANN‐modelled flows to generate synthetic replicates. The model has been applied to three annual streamflow records with variable record length, selected from different geographic regions, namely Africa, USA and former USSR. The performance of the proposed ANN‐based non‐linear hybrid model has been compared with that of the linear parametric hybrid model. The results from the case studies indicate that the proposed ANN‐based hybrid model (ANNHM) is able to reproduce the skewness present in the streamflows better compared to the linear parametric‐based hybrid model (LPHM), owing to the effective capturing of the non‐linearities. Moreover, the ANNHM, being a completely data‐driven model, reproduces the features of the marginal distribution more closely than the LPHM, but offers less smoothing and no extrapolation value. It is observed that even though the preservation of the linear dependence structure by the ANNHM is inferior to the LPHM, the effective blending of the two non‐linear models helps the ANNHM to predict the drought and the storage characteristics efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
567.
贾承造  张水昌 《地质学报》2023,97(9):2775-2801
超深层是指现今或曾经埋藏深度超过6000 m的沉积地层。中国海相超深层时代老,热演化程度高,经历的构造运动多,独特的构造-沉积和生烃环境,决定了海相超深层油气藏形成与分布的复杂性,成烃-成储-成藏规律明显不同于中浅地层,勘探的难度也远远大于国外中新生代克拉通盆地。经过半个多世纪的探索,近年来中国海相超深层油气勘探在中西部盆地取得一系列重大突破,显著提升了超深层领域油气资源的战略地位。与此同时,中国海相超深层油气地质理论也取得重大进展,形成了以重大地质转折期构造活动控制超深层油气地质要素发育、深埋高温环境导致多途径天然气生成、沉积-构造作用控制超深层油气储集空间形成与保持、超深层温压系统控制油气藏相态演化和多期成藏、多层系分布等为核心的理论认识,极大地发展了国外学者基于中新生代海相地层提出的油气生成与成藏模式,拓展了海相油气资源形成和分布的时空界限。  相似文献   
568.
A wide set of size‐distribution models of haze and fog droplets expressed in terms of the modified gamma distribution function have been used for evaluating the proportionality coefficient b in the empirical relationship between visibility V and liquid water content LWC, that is V=b (LWC)‐ 2/3, as proposed by Eldridge (1966). The evaluations of b turn out to be consistent with the values proposed in the literature and give evidence for its close dependence on the shape‐parameters of the droplet size distribution, especially as regards the mode radius and the width of the larger‐droplet wing. Three average relationship curves are proposed respectively for dense haze, “dry and cold” fog and “wet and warm” fog.

Corresponding to these cases, three correlation lines are presented between b and the ratio of the volume extinction coefficient at 3.70 μm wavelength to that at 0.55 μm, evaluated for the same uniform path in hazy and foggy atmospheres. Applied to measurements of infrared and visible transmission such correlation lines give the possibility of estimating the most proper value of b to be used in Eldridge's relationship for different atmospheric conditions.  相似文献   
569.
Abstract

This article provides a first-cut estimate of the potential impacts of the clean development mechanism (CDM) on electricity generation and carbon emissions in the power sector of non-Annex 1 countries. We construct four illustrative CDM regimes that represent a range of approaches under consideration within the climate community. We examine the impact of these CDM regimes on investments in new generation, under illustrative carbon trading prices of US$ 10 and 100/t C. In the cases that are most conducive to CDM activity, roughly 94% of new generation investments remains identical to the without-CDM situation, with only 6% shifting from higher to lower carbon intensity technologies.We estimate that the CDM would bolster renewable energy generation by as little as 15% at US$ 10/t C, or as much as 300% at US$ 100/t C.

A striking finding comes from our examination of the potential magnitude of the “free-rider” problem, i.e. crediting of activities that will occur even in the absence of the CDM. The CDM is intended to be globally carbon-neutral—a project reduces emissions in the host country but generates credits that increase emissions in the investor country. However, to the extent that unwarranted credits are awarded to non-additional projects, the CDM would increase global carbon emissions above the without-CDM emissions level. Under two of the CDM regimes considered, cumulative free-riders credits total 250–600 MtC through the end of the first budget period in 2012. This represents 10–23% of the likely OECD emissions reduction requirement during the first budget period. Since such a magnitude of free-rider credits from non-additional CDM projects could threaten the environmental integrity of the Kyoto protocol, it is imperative that policy makers devise CDM rules that encourage legitimate projects, while effectively screening out non-additional activities.  相似文献   
570.
《Climate Policy》2013,13(6):588-606
The regulation of greenhouse gas emissions from the electricity sector within a cap-and-trade system poses significant policy questions on where to locate the point of compliance. Electricity markets often cross national or other regulatory boundaries, so that electricity generated within the boundary may comply with expectations but imported electricity may not. The question addressed in this article is where to locate the point of compliance in the electricity sector—where in the supply chain linking fuel suppliers to generators to the transmission system to retail load-serving entities should the obligation for measurement and compliance be placed? This problem is examined in the specific context of California's legislative requirements and particular energy markets, with the implications of the different policy options explored. The conclusion offered is that one particular approach to regulating the electricity sector—the ‘first-seller approach’—would be best for California. The alternative ‘load-based approach’ has had a head start in the policy process but would undermine an economy-wide market-based emissions trading programme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号