全文获取类型
收费全文 | 828篇 |
免费 | 200篇 |
国内免费 | 68篇 |
专业分类
测绘学 | 9篇 |
地球物理 | 340篇 |
地质学 | 521篇 |
海洋学 | 43篇 |
天文学 | 8篇 |
综合类 | 26篇 |
自然地理 | 149篇 |
出版年
2024年 | 9篇 |
2023年 | 9篇 |
2022年 | 20篇 |
2021年 | 41篇 |
2020年 | 48篇 |
2019年 | 38篇 |
2018年 | 42篇 |
2017年 | 54篇 |
2016年 | 51篇 |
2015年 | 36篇 |
2014年 | 46篇 |
2013年 | 85篇 |
2012年 | 47篇 |
2011年 | 47篇 |
2010年 | 36篇 |
2009年 | 52篇 |
2008年 | 54篇 |
2007年 | 34篇 |
2006年 | 36篇 |
2005年 | 35篇 |
2004年 | 44篇 |
2003年 | 20篇 |
2002年 | 24篇 |
2001年 | 28篇 |
2000年 | 35篇 |
1999年 | 22篇 |
1998年 | 15篇 |
1997年 | 23篇 |
1996年 | 12篇 |
1995年 | 10篇 |
1994年 | 8篇 |
1993年 | 6篇 |
1992年 | 7篇 |
1991年 | 5篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 2篇 |
排序方式: 共有1096条查询结果,搜索用时 15 毫秒
71.
Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors 总被引:1,自引:0,他引:1
Dov Corenblit Johannes Steiger Angela M. Gurnell Eric Tabacchi Lydie Roques 《地球表面变化过程与地形》2009,34(13):1790-1810
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
72.
The effect of lithology on valley width,terrace distribution,and bedload provenance in a tectonically stable catchment with flat‐lying stratigraphy 下载免费PDF全文
Amanda Keen‐Zebert Mark R. Hudson Stephanie L. Shepherd Evan A. Thaler 《地球表面变化过程与地形》2017,42(10):1573-1587
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
73.
Effect of storms during drought on post‐wildfire recovery of channel sediment dynamics and habitat in the southern California chaparral,USA 下载免费PDF全文
Joan L. Florsheim Anne Chin Alicia M. Kinoshita Samira Nourbakhshbeidokhti 《地球表面变化过程与地形》2017,42(10):1482-1492
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τo/τc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
74.
New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy) 总被引:2,自引:0,他引:2
The Northern Marche coastal belt is characterised by a series of NW-SE trending, NE verging folds forming the easternmost edge of the Apennines thrust front. Several geomorphic features suggest that the folds are still growing and hence that the thrust front is active. The occurrence of several historical and instrumental earthquakes (e.g. 1672, 1690, 1786, 1875, 1916, 1930, 1972, all having Me 5.2) suggests that the thrust faults are also seismogenic.We performed a geomorphological analysis to identify and characterise the faults driving the active folds. Our approach assumes that anomalous drainage patterns and deformed Middle-Late Pleistocene alluvial and coastal terraces are indicators of the vertical component of tectonic strain. We identified, mapped and correlated with sea-level fluctuations a sequence of alluvial and coastal terraces. Longitudinal profiles of six rivers (Conca, Foglia, Metauro, Cesano, Misa, and Esino) show that terraces (1) consistently converge downstream, suggesting that they result from regional uplift that dies out near the coast, and (2) some are slightly warped where they cross anticline axes. We interpreted as coastal terraces several land-surface remnants arranged parallel to the present coastline. Lower remnants clearly top off gently landward-tilted coastal deposits. Reconstructed coastal terraces also seem to be tectonically warped.Our results help characterise the geometry and segmentation of a system that generated the largest earthquakes of the region and suggest the loci of potential seismic gaps. We conclude that the earthquake potential of the densely populated northern Marche coastal belt may be substantially higher than currently estimated. 相似文献
75.
Detailed echo‐sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low‐gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two‐dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross‐spectral energies vary over the bedform in a manner consistent with wave‐like perturbations that ‘break’ or ‘roll up’ into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
76.
This paper examined sequence‐stratigraphic features of a gravelly fluvial system of the Iwaki Formation, which developed in a forearc‐basin setting in Northeast Japan during the Eocene through Oligocene. On the basis of three‐dimensional architectural element analysis, we discriminated three major cycles of channel complexes, which contain ten component channel deposits in total in the fluvial succession. Component channel deposits in the uppermost part of each cycle are sandier and associated with overbank muddy deposits and coal beds as compared with those in the lower part of the cycle. Mean clast‐size also decreases upsection in the entire gravelly fluvial deposits. The fluvial succession is interpreted to have been deposited in response to an overall rise in relative sea level that was superimposed by three short‐term relative sea‐level rises on the basis of vertical stacking patterns and component lithofacies features of channel deposits, and of correlation of the fluvial succession with an age‐equivalent marine succession in an area about 50 km offshore. However, geometry and stacking patterns of the channel complexes do not exhibit any distinct temporal variation and amalgamated channel and bar deposits are dominant throughout the transgressive fluvial succession. On the other hand, an overall fining‐upward pattern of the entire Iwaki Formation fluvial deposits in association with three component fining‐upward patterns is distinct, and is interpreted to be consistent with the tenet of the standard fluvial sequence‐stratigraphic models. This indicates that the present example represents one type of variation in the standard fluvial sequence‐stratigraphic models, possibly reflecting the forearc‐basin setting, which is generally represented by higher valley slope, higher shedding of coarse‐grained sediments, and shorter longitudinal profiles to the coastal area as compared with a passive‐continental‐margin setting. 相似文献
77.
A variety of soft‐sediment deformation structures formed during or shortly after deposition occurs in the Cretaceous Seongpori and Dadaepo Formations of the southeastern Gyeongsang Basin exposed along coastal areas of southeastern Korean Peninsula for 0.5–2 km. These are mostly present in a fluvial plain facies, with interbedded lacustrine deposits. In this study, the features of different kinds of soft‐sediment deformation structures have been interpreted on the basis of sedimentology of structure‐bearing deposits, comparison with normal sedimentary structures, timing and mechanism of deformation, and triggering mechanisms. The soft‐sediment deformation structures can be classified into four morphological groups: (i) load structures (load casts, ball‐and‐pillow structures); (ii) soft‐sediment intrusive structures (dish‐and‐pillars, clastic dykes, sills); (iii) ductile disturbed structures (convolute folds, slump structures); and (iv) brittle deformation structures (syndepositional faulting, dislocated breccia). The most probable triggering mechanisms resulting in these structures were seismic shocks. These interpretations are based on the following field observations: (i) location of the study area within tectonically active fault zone reactivated several times during the Cretaceous; (ii) deformation structures confined to single stratigraphic levels; (iii) lateral continuity and occurrences of various soft‐sediment deformation structures in the deformed level over large areas; (iv) absence of depositional slope to indicate gravity sliding or slumping; and (v) similarity to the structures produced experimentally. The soft‐sediment deformation structures in the study areas are thus interpreted to have been generated by seismic shocks with an estimated magnitude of M > 5, representing an intermittent record of the active tectonic and sedimentary processes during the development and evolution of two formations from the late Early Cretaceous to the Late Cretaceous. 相似文献
78.
79.
Abstract A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system. 相似文献
80.
基于陆上油田密井网的河流相储层构型研究,经过数十年积累,理论基础及表征方法已比较成熟,然而,将其应用于海上油田稀疏井网条件时,依然面临较大的挑战。笔者团队经过多年探索,基于海上油田开发地质研究方法,形成了井震结合、以"复合砂体"为核心的海上河流相复合砂体构型理论与表征方法,其特点在于运用三维原型建模、地震构型相预测及地震驱动确定性建模等技术,重点表征影响海上油田开发的五、六、七级构型单元(复合河道带、单一河道带、复合点坝),针对开发阶段的小层细分对比及不连续渗流屏障刻画等方面具有明显的优势。目前,应用这套理论及方法开展精细地质建模和数值模拟依然存在挑战,需要进一步发挥地震资料作用并探索人工智能的地震解释新途径。 相似文献