首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   76篇
  国内免费   84篇
测绘学   38篇
大气科学   63篇
地球物理   133篇
地质学   201篇
海洋学   50篇
天文学   23篇
综合类   28篇
自然地理   38篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   11篇
  2020年   22篇
  2019年   31篇
  2018年   15篇
  2017年   20篇
  2016年   28篇
  2015年   17篇
  2014年   27篇
  2013年   28篇
  2012年   33篇
  2011年   30篇
  2010年   24篇
  2009年   27篇
  2008年   27篇
  2007年   22篇
  2006年   17篇
  2005年   25篇
  2004年   12篇
  2003年   25篇
  2002年   19篇
  2001年   17篇
  2000年   10篇
  1999年   14篇
  1998年   13篇
  1997年   12篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有574条查询结果,搜索用时 78 毫秒
71.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   
72.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
73.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   
74.
This research aims to understand how insurance, rainfall, land cover and urban flooding are related and how these variables influenced the material damage in the Lisbon Metropolitan Area (LMA) during the 2000–2011 period. Correlation coefficients show strong relationships between built-up areas and claims (0.94) and payouts (0.88). Despite no significant relationships being found between rainfall and the amount of material damage per event, three likelihood levels of flooding were determined for hourly rainfall. Unlike the studied period, the number of claims and their spatial distribution during the 2008 extreme rainfall event were strongly dependent on rainfall. Flooding related to the old watercourses assumed greater importance during this extreme event, recovering a more natural/ancient hydrological behaviour. In the LMA, the greatest material damage was the result of high-magnitude/low-probability rainfall events. Lower magnitude events can trigger numerous claims in heavily built-up areas, but they are hardly capable of producing large material damage.  相似文献   
75.
Based on core observations, well logs and test results of siderite-bearing mudstone from the Benxi Formation to the Member 2 of the Shanxi Formations in the Linxing block, northeastern Ordos Basin, a logging identification model for siderite-bearing mudstone (key layer) was established. The porosity characteristics and sealing property were quantitatively evaluated by logging data. Sedimentary control on the formation of multi-superimposed gas-bearing system in the development of key layers in the sequence framework was also discussed. The results showed that the siderite-bearing mudstone has obvious logging response characteristics, e.g., high photoelectric absorption cross-section index (PE), high density (DEN), high amplitude natural gamma ray (GR), low acoustic (AC), low resistivity (M2RX) and low neutron porosity (CNCF). The quantitatively evaluated results of the porosity characteristics and sealing property for the key layer showed that the key layer has the characteristics of low porosity (with an average of 1.20 percent), low permeability (with an average of 2.29 × 10−8μm2), and high breakthrough pressure (with an average of 12.32 MPa) in the study area. This layer acts as an impermeable gas barrier in a multi-superimposed gas system. The results also indicated that the material composition of the multi-superimposed gas-bearing system can be established by the sequence stratigraphic framework. The sedimentary evolution results in a cyclic rhythm of material composition vertically. The spatial distribution of the corresponding transgressive event layer near the maximum flooding surface (MFS) in the sequence framework restricts the spatial distribution of the key layer with high breakthrough pressure and low porosity, which constitutes the gas-bearing system boundary. The siderite-bearing mudstone formed near the MFS in the second-order sequence and constitutes a stable comparison of the first-order gas-bearing system boundary, which has a wide range of regional distribution and stable thickness. The siderite-bearing mudstone formed near the MFS in the third-order sequence is often incompletely preserved due to the late (underwater) diversion channel erosion and cutting. This layer forms the coal-bearing reservoirs, which we termed as a second-order gas-bearing system in adjacent third-order sequences to form a uniform gas-bearing system.  相似文献   
76.
郑贺梅  刘鹏程  郑舰 《现代地质》2015,29(6):1467-1474
以胜利油田A区块特超稠油油藏为目标区块,自主研发了高温高压二维比例物理模型,研究了不同开发阶段水平井蒸汽驱油机理,开展了油藏压力、井底干 度、注汽强度对水平井蒸汽驱的效果影响的研究。物模实验结果显示,蒸汽驱整个过程分为三个阶段:存水回采期、汽驱受效期、蒸汽突破期。存水回采期蒸汽腔向水平方向扩展,以水平驱替方式为主 ;汽驱受效期蒸汽腔向垂向和水平方向扩展,以水平驱替方式为主,纵向泄油为辅;后期蒸汽突破,蒸汽腔继续向上方扩展,以纵向泄油为主,实现油层整体动用。5 MPa时转蒸汽驱的采出程度高于7 MPa时转蒸汽驱的采出程度;蒸汽驱的井底蒸汽干度应不低于0.4,蒸汽干度越高,水平井蒸汽驱的开发效果越好;注汽强度为1.9 t/(d·ha·m)时温度场最为发育。同时,在高压下提高干度可实现水 平井蒸汽驱的有效开发。以上的实验结果较好地指导了胜利油田A区块特超稠油油藏水平井蒸汽驱开发,取得了明显的开发效果,该研究对于类似稠油和超稠油油藏水平井蒸汽驱开发具有重要的指导意义 。  相似文献   
77.
陈祖华 《现代地质》2015,29(4):950-957
CO2驱是一种能大幅度提高原油采收率的三次采油技术,国内该项技术的研究和应用起步较晚,多以先导试验为主。苏北盆地溱潼凹陷经过10余年的探索,已经在5个低渗油田开展了CO2驱先导试验和推广应用,针对这5个油藏利用一维细管模拟和油藏数值模拟方法开展了注气时机、段塞尺寸和注气部位的研究,并应用典型实例进行了分析,认为先期注入提高混相压力,可更有效地缩短两相区过渡带,增加油相中溶解的CO2含量,降低油相粘度和油气界面张力,进而提高混相程度,更有利于驱油;采用大尺寸段塞可加大CO2波及区域,较好地保持地层能量,从而提高油井见效率,增强驱替效果;高部位注气可有效地抑制重力超覆,减少CO2气体过早地产出和突破的机会。就苏北盆地低渗油藏而言,采用先期注入、大尺寸段塞和高部位注气不失为一种成熟有效的提高采收率方法。  相似文献   
78.
The flooding susceptibility of alluvial fans in the Southern Apennines has long been neglected. To partly address this oversight, we focus on the region of Campania which contains highly urbanized piedmont areas particularly vulnerable to flooding. Our findings are based on stratigraphic analysis of the fans and morphometric analysis of the basin‐fan systems. Using geomorphological analysis we recognized active alluvial fans while stratigraphic analysis together with statistical analysis of the morphometric variables was used to classify the fans in terms of the transport process involved. The results indicate that in the geological context examined, the best discrimination between debris flow (Df) and water flood (Wf) processes is achieved by means of two related variables, one for the basin (feeder channel inclination, Cg) and one for the fan (fan length, Fl). The probability that an unclassified fan belongs to group Wf is computed by applying a logistic function in which a P value exceeding 0.5 indicates that a basin/fan system belongs to group Wf. This important result led to the classification of the entire basin/fan system data. As regards process intensity, debris flow‐dominated fans are susceptible to the occurrence of flows with high viscosity and hence subject to more severe events than water flood‐dominated fans. Bearing this in mind, the data gathered in this study allow us to detect where alluvial fan flooding might occur and give information on the different degrees of susceptibility at a regional scale. Regrettably, urban development in recent decades has failed to take the presence of such alluvial fans into account due to the long recurrence time (50–100 years) between floods. This paper outlines the distribution of such susceptibility scenarios throughout the region, thereby constituting an initial step to implementing alluvial fan flooding control and mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
79.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
80.
收集了1995—2007年中原油田濮阳地区各油田的注水开采等质量迁移资料,利用图示法研究发现油田注水与区域地震活动之间存在一定联系,并定量计算了油田注水引起的重力变化量。结合重力复测资料对油田注水引起的重力场变化和该地区地震之间的关系进行了初步研究,其注采作业引起的重力场变化在±0.1~10×10-8 m.s-2之间,并随着油田中心区域的距离而衰减。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号