If a geochemical compositional datasetX (n×p)is a realization of a physical mixing process, then each of its sample (row) vectors will approximately be a convex combination (mixture) of a fixed set of (l×p)extreme compositions termed endmembers. The kpoints in p-space corresponding to a specified set of k (k
linearly independent endmember estimates associated with a p-variate (n×p)compositional datasetX,define the vertices of a (k–1)dimensional simplexH.The nestimated mixturesX (n×p)which together account for the systematic variation in the datasetX,should each be convex combinations of the kfixed endmember estimates. Accordingly,the npoints in p-space which represent these mixtures should be interior points of the simplexH.Otherwise, for each sample point which lies outsideH,at least one of the mixture coefficients (endmember contributions) will be negative. The purpose of this paper is to describe procedures for expandingHin the situation that its vertices are not a set of extreme points for the set which represents the mixtures. 相似文献
以陕西省横山县境内的Hyperion数据为数据源,提出一种针对土地退化的制图方法:土地退化指数法(LDI: Land Degradation Index)。在影像分类的基础上,利用在分类过程中提取的训练样本进行线性波谱分离,得到各个端元的分离影像和RMS误差影像,再通过设置新的端元和反复运行线性波谱分离算法得到最终的训练样本,然后利用神经网络法对影像进行二次分类,最后在掩膜处理的基础之上把土地分为:轻度退化,中度退化和高度退化三种类型(Kappa=0.90)。文中分别采用了三种分类方法:监督分类与非监督分类相结合的混合分类方法、光谱角制图(SAM)方法、混合调制匹配滤波(MTMF)方法。结果显示混合分类方法(Kappa=0.71)具有比光谱角制图方法(Kappa=0.54)和混合调制匹配滤波方法(Kappa=0.60)更高的分类精度,所以选择在混合分类的基础上进行土地退化指数LDI的分析。 相似文献