首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   8篇
  国内免费   1篇
地球物理   15篇
地质学   2篇
天文学   2篇
自然地理   8篇
  2020年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  1997年   1篇
  1987年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
ABSTRACT

Statistical relationships between weather conditions and the release of snow avalanches in the low-elevation coastal valleys of the northern Gaspé Peninsula are still poorly validated. As such, we explored climate–avalanche relationships through classification tree algorithms applied to tree-ring reconstructions of avalanche events. In order to assess the contribution of local factors on avalanche activity, avalanche regimes on east- and west-facing slopes were analyzed and compared. The results showed that avalanches on east-facing slopes appear to be primarily related to large cumulative snowfall in January, February, and March. On west-facing slopes, avalanches are mainly due to episodic snowfall and warming temperatures. However, both sides of the valleys showed the potential for the release of large avalanches in November and December, which is earlier than expected by the literature. Indeed, the weather variability at that time of the year (temperature oscillation around 0ºC) appears to favor the formation of an early, unstable snowpack and subsequent triggering of avalanches, such as the wet slab avalanche recorded by a time-lapse camera in November 2014. This camera provided a useful insight on the capacities of classification-tree models to link the yearly resolution of tree-ring data with weather triggers at different timescales.  相似文献   
22.
山洪是中国主要的自然灾害之一,严重威胁山区人民生命财产与工程建设安全。针对山洪已发展了多种多样的研究手段,但多集中于过去几十年的时间段内。树轮地貌学方法作为研究历史山洪事件的有效手段之一,在世界范围内被广泛应用。利用树轮中的生长干扰信息,可以对山洪事件进行精确定年,重建无记录或少记录地区内山洪发生的频率、大小和空间分布特征等,根据伤疤的高度或应用水力模型则可以定量重建山洪的流量大小。随着树轮地貌学方法和技术的逐渐成熟,研究趋向于探讨山洪的驱动机制、更大空间尺度山洪的规律性等,具有广阔的应用前景,但是基于树轮的山洪研究工作在国内还未见报道。论文对树轮地貌学应用于山洪研究的发展过程进行了系统回顾,对研究进展进行了简要概述,最后讨论该研究领域的潜力及局限性,以期为在国内进一步开展相关工作提供参考信息。  相似文献   
23.
Debris flows and debris floods cause frequent geomorphic hazards, even in the mid‐mountains of Central Europe. In the Hrubý Jeseník Mountains (Eastern Sudetes, Czech Republic), strong anthropogenic interventions have created specific conditions for erosion, transport and accumulation of material released by debris flow/flood events. We present a detailed spatio‐temporal reconstruction of the hydro‐geomorphic process activity in two adjacent sub‐catchments using dendrogeomorphic methods applied to the steep, narrow channels. An analysis of 172 sampled trees [Picea Abies (L.) Karst.] revealed 14 torrential events since 1943 in the Klepá?ský stream sub‐catchment and 11 events since 1897 in the Keprnický stream sub‐catchment. Identical events were identified in 1965, 1991, 1997, 2002 and 2010. The event return periods were comparable with return periods from the foothills of the European Alps. A higher frequency of events in the first sub‐catchment may be caused by the presence of a deep‐seated landslide, steeper slopes and a higher susceptibility to shallow slope deformations. Different spatial patterns of events were presented using the Kernel Density analysis in ArcMap 10.1. Clusters of affected trees in the valley floor during the last decades may be due to increased erosion below the check dams and increased accumulation above. The presence of check dams and slope stabilization works since the 1960s has mitigated the processes in several gullies, but due to the current non‐interventional management, the risk of their damage is increasing, particularly when increased activity is observed in the adjacent unprotected gullies.  相似文献   
24.
Dendrogeomorphic chronologies of landslide movements are frequently used to investigate past landslide activity. Slide areas are often affected by other slope movements (e.g. creep) simultaneously. Trees growing on landslides record all types of ground movements, which potentially creates significant noise in tree ring based chronologies of landslide movements. The effect of creep movements on dendrogeomorphic landslide chronologies was evaluated in a block‐type landslide in the south‐western foreland of the Orlické hory Mountains. In total, 272 trees (Picea abies and Fagus sylvatica) were sampled (1088 increment cores) on the sub‐horizontal surfaces of rotated slide blocks, which were presumably created only by slide movements, and on the steep internal scarps separating landslide blocks, which were presumably created and affected by a combination of slide and creep movements. Ground movements were dated based on growth disturbances identified in an analysis of eccentric tree growth. The trees growing on the internal landslide scarps separating the rotated blocks exhibited a significantly higher number and frequency of growth disturbances than those growing on the sub‐horizontal block surfaces. All eight dated block surface movements were also identified on the internal scarps. Creep‐based events represented as many as 70% of the dated movement events on the internal scarps. Varying the It thresholds did not filter out more than 40% of the noise without significantly reducing the number of true dated slide events. A significant difference was observed between the ability of P. abies and F. sylvatica to record ground movements by eccentric growth. Probably due to its shallower roots (and weaker anchoring of the tree to landslide blocks), P. abies appears to be more sensitive to surficial ground movement, which potentially increases the proportion of dated creep events (noise). Thus, the careful selection of sampled tree species with different physiologies should be considered during dendrogeomorphic field sampling. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
25.
The assessment of the dominant flow type on alluvial fans usually refers to two categories: debris‐flow fans (i.e. sediment gravity flows) and fluvial fans (i.e. fluid gravity flows). Here we report the results of combined morphometric, stratigraphic and sedimentological approaches which suggest that hyperconcentrated flows, a transitional process rheologically distinct from debris flows and floods and sometimes referred to as debris floods, mud floods, or transitional debris flows, are the dominant fan building process in eastern Canada. These flows produce transitional facies between those of debris flows which consist of a cohesive matrix‐supported diamicton, and those of river flows which display more distinct stratification. The size of the blocks in the channels and the abrasion scars at the base of several trees attest to the high transport capacity of these flows. The fan channels are routed according to various obstacles comprised primarily of woody debris that impede sediment transit. However, these conditions of sediment storage are combined with readily available sediment due to the friable nature of the local lithology. Tree‐ring analysis allowed the reconstruction of eight hydrogeomorphic events which are characterized by a return period of 9.25 years for the period 1934–2008, although most of the analyzed events occurred after 1970. Historical weather data analysis indicates that they were related to rare hydrometeorological events at regional and local scales. This evidence led to the elaboration of weather scenarios likely responsible for triggering flows on the fan. According to these scenarios, two distinct hydrologic regimes emerge: the torrential rainfall regime and the nival regime related to snowmelt processes. Hydrogeomorphic processes occurring in a cold‐temperate climate, and particularly on small forested alluvial fans of north‐eastern North America, should receive more attention from land managers given the hazard they represent, as well as because of their sensitivity to various meteorological parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
26.
The evolution of a debris‐flow cone depends on a multitude of factors in the hydrogeomorphic system. Investigations of debris‐flow history and cone dynamics in highly active catchments therefore require an integrative approach with a temporal and spatial resolution appropriate for the goals of the study. We present the use of an orthophoto time series to augment standard dendrogeomorphic techniques to describe the spatio‐temporal dynamics of debris flows on a highly active cone in the western Austrian Alps. Analysis of seven orthophotos since 1951 revealed a migration of active deposition areas with a resulting severe loss of forest cover (> 80%) and a mean tree loss per year of 10·4 (range 1·3–16·6 trees per year). Analysis of 193 Pinus mugo ssp. uncinata trees allowed the identification of 161 growth disturbances corresponding to 16 debris flows since 1839 and an average decadal frequency of 0·9 events. As a result of the severe loss of forest cover, we speculate that < 20% of the more recent events were actually captured in the tree‐ring record, giving a decadal return interval of ~7·5 events for a period of 60 years. Based on three annual field observations, it is evident that this catchment (the Bärenrüfe) produces very frequent (< 1 yr), small (in the order of a few 10 to 100 m3) debris flows with minor material relocation. The specific challenges of tree‐ring analysis in this tree species and in highly active environments are explicitly addressed in the discussion and underline the necessity of employing complementary methods of analysis in an integrative manner. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
27.
Complex landslides, capable of reactivation, are typical slope movements in high relief areas. Due to their distribution, size and kinematics, these landforms represent a major hazard, posing a high risk to populations, settlements and infrastructures. This paper integrates geomorphological analyses, instrumental measurements and dendrochronological approaches in assessing a large, reactivated landslide system on the southern piedmont of Monte Sirino (southern Italy). The landslide system is associated with weak geological structures, earthquake activity, and rapid recent incision of the mid-Pleistocene Noce lake deposits. Potential reactivation triggers include a higher regional annual rainfall, one of the highest in southern Italy, and more frequent heavy snowfalls in recent decades. Reactivation of the Sirino landslide system has important implications for the motorway connecting Salerno and Reggio Calabria, which crosses it. The results of our study show that the slide is reactivated with an almost decadal frequency and that major reactivations are correlated to prolonged snowfall, which occurs with increasing frequency in the southern Apennines. The last observation suggests the need for similar studies on the behaviour of other landslide systems in the southern Apennines, performing integrated approaches such as geotechnical and dendrogeomorphological analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号