首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   20篇
  国内免费   16篇
测绘学   2篇
大气科学   2篇
地球物理   115篇
地质学   62篇
海洋学   3篇
天文学   2篇
综合类   2篇
自然地理   24篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   12篇
  2013年   17篇
  2012年   12篇
  2011年   6篇
  2010年   10篇
  2009年   12篇
  2008年   10篇
  2007年   7篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   3篇
  1986年   1篇
排序方式: 共有212条查询结果,搜索用时 0 毫秒
171.
As the forward directivity and fling effect characteristics of the near-fault ground motions, seismic response of structures in the near field of a rupturing fault can be significantly different from those observed in the far field. The unique characteristics of the near-fault ground motions can cause considerable damage during an earthquake. This paper presents results of a study aimed at evaluating the near-fault and far-fault ground motion effects on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 10 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The Koyna gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records. The Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is employed in nonlinear analysis. Nonlinear dynamic response and seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. Both local and global damage indices are established as the response parameters. The results obtained from the analyses of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the near-fault ground motions, which have significant influence on the dynamic response of dam–reservoir–foundation systems, have the potential to cause more severe damage to the dam body than far-fault ground motions.  相似文献   
172.
F. Genz  L.D. Luz 《水文科学杂志》2013,58(5):1020-1034
Abstract

The hydrological regime of a river is defined by variables or representative curves that in turn have characteristics related to fluctuations in flow rates resulting from climate variability. Distinguishing between the causes of streamflow variations, i.e. those resulting from human intervention in the watershed and those due to climate variability, is not trivial. To discriminate the alterations resulting from climate variation from those due to regulation by dams, a reference hydrological regime was established using the classification of events based on mean annual streamflow anomalies and inferred climatic conditions. The applicability of this approach was demonstrated by analysis of the streamflow duration curves. An assessment of the hydrological regime in the lower reaches of the São Francisco River, Brazil, after the implementation of hydropower plants showed that the operation of the dams has been responsible for 59% of the hydrological changes, while the climate (in driest conditions) has contributed to 41% of the total changes.

Editor Z.W. Kundzewicz

Citation Genz, F. and Luz, L.D., 2012. Distinguishing the effects of climate on discharge in a tropical river highly impacted by large dams. Hydrological Sciences Journal, 57 (5), 1020–1034.  相似文献   
173.
A new concept to determine state of the damage in concrete gravity dams is introduced. The Pine Flat concrete gravity dam has been selected for the purpose of the analysis and its structural capacity, assuming no sliding plane and rigid foundation, has been estimated using the two well‐known methods: nonlinear static pushover (SPO) and incremental dynamic analysis (IDA). With the use of these two methods, performance and various limit states of the dam have been determined, and three damage indexes have been proposed on the basis of the comparison of seismic demands and the dam's capacity. It is concluded that the SPO and IDA can be effectively used to develop indexes for seismic performance evaluation and damage assessment of concrete gravity dams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
174.
The paper provides a review of experience with the construction of hydraulic projects in the permafrost regions. Principles for construction, operation and maintenance of earth dams are refined and formulated. High priority needs for improving the stability of structures are identified.  相似文献   
175.
A direct finite element method for nonlinear earthquake analysis of 2‐dimensional dam–water–foundation rock systems has recently been presented. The analysis procedure uses standard viscous‐damper absorbing boundaries to model the semi‐unbounded foundation‐rock and fluid domains and specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a generalization of the direct finite element method with viscous‐damper boundaries to 3‐dimensional dam–water–foundation rock systems. Step‐by‐step procedures for determining the effective earthquake forces starting from a ground motion specified at a control point on the foundation‐rock surface is developed, and several numerical examples are computed and compared with independent benchmark solutions to demonstrate the effectiveness of the analysis procedure for modeling 3‐dimensional systems.  相似文献   
176.
It is becoming increasingly popular to reintroduce beaver to streams with the hopes of restoring riparian ecosystem function or reducing some of the hydrological impacts of climate change. One of the risks of relying on beaver to enhance ecosystem water storage is that their dams are reportedly more apt to fail during floods which can exacerbate flood severity. Missing are observations of beaver dam persistence and water storage capacity during floods, information needed to evaluate the risk of relying on beaver as a nature-based flood solution. A June rainstorm in 2013 triggered the largest recorded flood in the Canadian Rocky Mountains west of Calgary, Alberta. We opportunistically recorded hydrometric data during the rainfall event at a beaver-occupied peatland that has been studied for more than a decade. We supplemented these observations with a post-event regional analysis of beaver dam persistence. Results do not support two long-held hypotheses—that beaver ponds have limited flood attenuation capacity and commonly fail during large flood events. Instead we found that 68% of the beaver dam cascade systems across the region were intact or partially intact after the event. Pond fullness, in addition to the magnitude of the water-sediment surge, emerged as important factors in determining the structural fate of dam cascade sequences. Beaver ponds at the instrumented site quickly filled in the first few hours of the rain event and levels were dynamic during the event. Water storage offered by the beaver ponds, even ones that failed, delayed downstream floodwater transmission. Study findings have important implications for reintroducing beaver as part of nature-based restoration and climate change adaptation strategies.  相似文献   
177.
Extraction of natural frequencies of a gravity dam or an embankment dam plays an important role in the seismic design of the dam because the seismic response of a dam is dependent largely on the dynamic characteristics of the dam. Owing to the lack of exact solutions and the geometry of a dam, numerical methods such as finite element methods have been often used to extract the natural frequencies of the dam. Since the finite element method is an approximate one, the resulting finite element solution to the natural frequency of a dam cannot be safely used unless its accuracy is evaluated within the acceptable range for the seismic design of the dam. To solve this problem, some asymptotic formulae for correcting the finite element predicted natural frequencies of a gravity dam and an embankment dam have been developed in this paper. Since the present asymptotic formulae are derived from the fact that the finite element solution tends to the exact one if the finite element size used approaches zero, they provide a corrected solution of higher accuracy for the natural frequency of a dam so that the accuracy of a finite element solution can be evaluated against this corrected solution. After the correctness and usefulness of the present formulae are assessed, two practical examples have been given to show how the asymptotic formulae can be used to correct and evaluate the discretization error for the finite element predicted natural frequencies of gravity dams and embankment dams.  相似文献   
178.
We investigate the use of the short‐lived fallout radionuclide beryllium‐7 (7Be; t1/2 = 53·4 days) as a tracer of medium and coarse sand (0·25–2 mm), which transitions between transport in suspension and as bed load, and evaluate the effects of impoundment on seasonal and spatial variations in bed sedimentation. We measure 7Be activities in approximately monthly samples from point bar and streambed sediments in one unregulated and one regulated stream. In the regulated stream our sampling spanned an array of flow and management conditions during the annual transition from flood control in the winter and early spring to run‐of‐the‐river operation from late spring to autumn. Sediment stored behind the dam during the winter quickly became depleted in 7Be activity. This resulted in a pulse of ‘dead’ sediment released when the dam gates were opened in the spring which could be tracked as it moved downstream. Measured average sediment transport velocities (30–80 metres per day (m d?1)) exceed those typically reported for bulk bed load transport and are remarkably constant across varied flow regimes, possibly due to corresponding changes in bed sand fraction. Results also show that the length scale of the downstream impact of dam management on sediment transport is short (c. 1 km); beyond this distance the sediment trapped by the dam is replaced by new sediment from tributaries and other downstream sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
179.
Beavers can profoundly alter riparian environments, most conspicuously by creating dams and wetlands. Eurasian beaver (Castor fiber) populations are increasing and it has been suggested they could play a role in the provision of multiple ecosystem services, including natural flood management. Research at different scales, in contrasting ecosystems is required to establish to what extent beavers can impact on flood regimes. Therefore, this study determines whether flow regimes and flow responses to storm events were altered following the building of beaver dams and whether a flow attenuation effect could be significantly attributed to beaver activity. Four sites were monitored where beavers have been reintroduced in England. Continuous monitoring of hydrology, before and after beaver impacts, was undertaken on streams where beavers built sequences of dams. Stream orders ranged from 2nd to 4th, in both agricultural and forest-dominated catchments. Analysis of >1000 storm events, across four sites showed an overall trend of reduced total stormflow, increased peak rainfall to peak flow lag times and reduced peak flows, all suggesting flow attenuation, following beaver impacts. Additionally, reduced high flow to low flow ratios indicated that flow regimes were overall becoming less “flashy” following beaver reintroduction. Statistical analysis, showed the effect of beaver to be statistically significant in reducing peak flows with estimated overall reductions in peak flows from −0.359 to −0.065 m3 s−1 across sites. Analysis showed spatial and temporal variability in the hydrological response to beaver between sites, depending on the level of impact and seasonality. Critically, the effect of beavers in reducing peak flows persists for the largest storms monitored, showing that even in wet conditions, beaver dams can attenuate average flood flows by up to ca. 60%. This research indicates that beavers could play a role in delivering natural flood management.  相似文献   
180.
Ambient vibration tests were conducted on a 56 metre high concrete gravity dam to measure its modal properties for validating a finite element model of the dam–reservoir–foundation system. Excitation was provided by wind, by reservoir water cascading down the spillweir, and by the force of water released through outlet-pipes. Vibrations of the dam were measured using accelerometers, and 3-hour data records were acquired from each location. Data were processed by testing for stationarity and rejecting non-stationary portions before Fourier analysis. Power spectra with low variance were generated from which natural frequencies of the dam were identified clearly and modal damping factors estimated. Modal analysis of the frequency response spectra yielded mode shapes for the six lowest lateral modes of vibration of the dam. The finite element model for the dam was analysed using EACD-3D, and the computed mode shapes and natural frequencies compared well with the measured results. The study demonstrates that ambient vibration testing can offer a viable alternative to forced vibration testing when only the modal properties of a dam are required. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号