首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2015篇
  免费   594篇
  国内免费   625篇
测绘学   48篇
大气科学   671篇
地球物理   519篇
地质学   1143篇
海洋学   176篇
天文学   157篇
综合类   80篇
自然地理   440篇
  2024年   12篇
  2023年   35篇
  2022年   38篇
  2021年   89篇
  2020年   94篇
  2019年   108篇
  2018年   88篇
  2017年   78篇
  2016年   97篇
  2015年   101篇
  2014年   114篇
  2013年   177篇
  2012年   117篇
  2011年   116篇
  2010年   87篇
  2009年   140篇
  2008年   136篇
  2007年   171篇
  2006年   148篇
  2005年   144篇
  2004年   122篇
  2003年   122篇
  2002年   110篇
  2001年   87篇
  2000年   102篇
  1999年   88篇
  1998年   94篇
  1997年   66篇
  1996年   66篇
  1995年   48篇
  1994年   48篇
  1993年   39篇
  1992年   35篇
  1991年   22篇
  1990年   20篇
  1989年   21篇
  1988年   17篇
  1987年   11篇
  1986年   16篇
  1985年   3篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有3234条查询结果,搜索用时 15 毫秒
701.
Abstract

By using perturbation methods an analytical study has been carried out of large-scale dynamo models, which previously were mainly investigated by numerical methods.  相似文献   
702.
Abstract

A theoretical explanation is advanced consisting of a five stage process for the formation of polygonal ground which consists of stone borders forming regular hexagons and soil centres. One of these stages, namely the onset of convection in a porous soil between temperatures of 0°C and approximately 4-6°C, is studied analytically. Darcy's law is employed but variable permeability is allowed for and a parabolic density dependence on temperature is assumed. It is found that the theoretical predictions of the aspect ratio agree very well with field studies when a constant upper surface heat flux condition is imposed and an upwardly stratified permeability is chosen. Field study data, which agree very well with the theory, are reported in detail.  相似文献   
703.
Rocks in the Brungle‐Darbalara area of the Tumut Trough form two distinct domains: basement (mainly Bullawyarra Schist), of Cambrian‐Ordovician age, and an Ordovician ‐ Early Silurian sedimentary and volcanic cover sequence. These two domains are separated by a sharp discontinuity that marks an abrupt change in rock type, structure, metamorphic grade and deformation style. Cover sequences have undergone only one major penetrative deformation during the Late Silurian, involving sub‐greenschist facies metamorphism and upright folding. In contrast, the basement also underwent at least two older deformations at greenschist facies and contains distinct high‐strain zones subconcordant with the basement‐cover contact. The high‐strain zones, characterized by a ubiquitous south‐southeast trending mineral lineation, record a discontinuous history of ductile followed by brittle behaviour, consistent with an extensional origin.

The structural and metamorphic discontinuity separating basement from Silurian cover is characterized by widespread cataclasis and alteration and is interpreted as a major detachment fault associated with lithospheric extension and the development of the Tumut Trough in the Early Silurian. During the main period of movement on the detachment, which took place prior to intrusion of the Blacks Flat Diorite into the Bullawyarra Schist, mafic and serpentinized ultramafic rocks either were tectonically emplaced or intruded into the high strain zones. This preceded and accompanied extensional faulting of the cover and deposition of Silurian trough sediments and volcanics which unconformably overlie and onlap older units.

The development of the Tumut Trough, in the Brungle‐Darbalara area, bears many similarities with that of Cordilleran metamorphic core complexes. Such a model is consistent with environments suggested for the trough by previous workers. The south‐southeast extension direction parallels the trough‐bounding faults and implies an overall strike‐slip tectonic setting.  相似文献   
704.
Abstract

In a rapidly rotating, electrically conducting fluid we investigate the thermal stability of the fluid in the presence of an imposed toroidal magnetic field and an imposed toroidal differential rotation. We choose a magnetic field profile that is stable. The familiar role of differential rotation is a stabilising one. We wish to examine the less well known destabilising effect that it can have. In a plane layer model (for which we are restricted to Roberts number q = 0) with differential rotation, U = sΩ(z)1 ?, no choice of Ω(z) led to a destabilising effect. However, in a cylindrical geometry (for which our model permits all values of q) we found that differential rotations U = sΩ(s)1 ? which include a substantial proportion of negative gradient (dΩ/ds ≤ 0) give a destabilising effect which is largest when the magnetic Reynolds number R m = O(10); the critical Rayleigh number, Ra c, is about 7% smaller at minimum than at Rm = 0 for q = 106. We also find that as q is reduced, the destabilising effect is diminished and at q = 10?6, which may be more appropriate to the Earth's core, the effect causes a dip in the critical Rayleigh number of only about 0.001%. This suggests that we see no dip in the plane layer results because of the q = 0 condition. In the above results, the Elsasser number A = 1 but the effect of differential rotation is also dependent on A. Earlier work has shown a smooth transition from thermal to differential rotation driven instability at high A [A = O(100)]. We find, at intermediate A [A = O(10)], a dip in the Rac vs. Rm curve similar to the A = 1 case. However, it has Rac ≤ 0 at its minimum and unlike the results for high A, larger values of Rm result in a restabilisation.  相似文献   
705.
Abstract

The stratification profile of the Earth's magnetofluid outer core is unknown, but there have been suggestions that its upper part may be stably stratified. Braginsky (1984) suggested that the magnetic analog of Rossby (planetary) waves in this stable layer (the ‘H’ layer) may be responsible for a portion of the short-period secular variation. In this study, we adopt a thin shell model to examine the dynamics of the H layer. The stable stratification justifies the thin-layer approximations, which greatly simplify the analysis. The governing equations are then the Laplace's tidal equations modified by the Lorentz force terms, and the magnetic induction equation. We linearize the Lorentz force in the Laplace's tidal equations and the advection term in the magnetic induction equation, assuming a zeroth order dipole field as representative of the magnetic field near the insulating core-mantle boundary. An analytical β-plane solution shows that a magnetic field can release the equatorial trapping that non-magnetic Rossby waves exhibit. A numerical solution to the full spherical equations confirms that a sufficiently strong magnetic field can break the equatorial waveguide. Both solutions are highly dissipative, which is a consequence of our necessary neglect of the induction term in comparison with the advection and diffusion terms in the magnetic induction equation in the thin-layer limit. However, were one to relax the thin-layer approximations and allow a radial dependence of the solutions, one would find magnetic Rossby waves less damped (through the inclusion of the induction term). For the magnetic field strength appropriate for the H layer, the real parts of the eigenfrequencies do not change appreciably from their non-magnetic values. We estimate a phase velocity of the lowest modes that is rather rapid compared with the core fluid speed typically presumed from the secular variation.  相似文献   
706.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   
707.
A combination of a dense reflection seismic grid and up to 50‐m‐long records from sediment cores and cone penetration tests was used to study the geometry and infill lithology of an E–W‐trending buried tunnel valley in the south‐eastern North Sea. In relation to previously known primarily N–S‐trending tunnel valleys in this area, the geometry and infill of this 38‐km‐long and up to 3‐km‐wide valley is comparable, but its E–W orientation is exceptional. The vertical cross‐section geometry may result from subglacial sediment erosion of advancing ice streams and secondary incision by large episodic meltwater discharges with high flow rates. The infill is composed of meltwater sands and reworked till remnants on the valley flanks that are overlain by late Elsterian rhythmic, laminated, lacustrine fine‐grained sediments towards the centre of the valley. A depression in the valley centre is filled with sediments most likely from the Holsteinian transgression and a subsequent post‐Holsteinian lacustrine quiet‐water setting. The exceptional axis orientation of this tunnel valley points to a regional N–S‐oriented ice front during the late Elsterian. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
708.
The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene–Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision. This climatic event is most clearly reflected in an abrupt shift in deuterium excess values, accompanied by more gradual changes in δ18O, dust concentration, a range of chemical species, and annual layer thickness. A timescale based on multi‐parameter annual layer counting provides an age of 11 700 calendar yr b2 k (before AD 2000) for the base of the Holocene, with a maximum counting error of 99 yr. A proposal that an archived core from this unique sequence should constitute the Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) has been ratified by the International Union of Geological Sciences. Five auxiliary stratotypes for the Pleistocene–Holocene boundary have also been recognised. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
709.
710.
基于云南丽江台超导重力仪OSG-066超过5 a的连续重力潮汐观测资料,获取高精度潮汐参数并构建地方重力潮汐模型,为丽江地区精确重力潮汐改正提供参考。研究9个全球海潮模型在丽江台的重力影响改正有效性,用时域内回归分析法和频域内小波分析法分别研究大气重力导纳值的变化特征,并利用观测潮汐数据估算自由核章动本征参数。结果表明,9个海潮模型在丽江台的重力影响改正效果基本一致,NAO.99b模型的改正精度较高;大气重力导纳值在时域和频域内均显示出较为明显的季节性变化特征,且与降雨量变化存在负相关关系。自由核章动本征周期为431.5(411.2, 454.0)恒星日,品质因子为 -2 796。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号