全文获取类型
收费全文 | 7640篇 |
免费 | 1431篇 |
国内免费 | 1957篇 |
专业分类
测绘学 | 121篇 |
大气科学 | 3847篇 |
地球物理 | 1662篇 |
地质学 | 2016篇 |
海洋学 | 868篇 |
天文学 | 232篇 |
综合类 | 272篇 |
自然地理 | 2010篇 |
出版年
2024年 | 58篇 |
2023年 | 126篇 |
2022年 | 239篇 |
2021年 | 378篇 |
2020年 | 381篇 |
2019年 | 393篇 |
2018年 | 361篇 |
2017年 | 411篇 |
2016年 | 411篇 |
2015年 | 424篇 |
2014年 | 541篇 |
2013年 | 938篇 |
2012年 | 514篇 |
2011年 | 475篇 |
2010年 | 459篇 |
2009年 | 577篇 |
2008年 | 562篇 |
2007年 | 529篇 |
2006年 | 475篇 |
2005年 | 412篇 |
2004年 | 360篇 |
2003年 | 324篇 |
2002年 | 284篇 |
2001年 | 221篇 |
2000年 | 212篇 |
1999年 | 166篇 |
1998年 | 172篇 |
1997年 | 157篇 |
1996年 | 113篇 |
1995年 | 77篇 |
1994年 | 70篇 |
1993年 | 49篇 |
1992年 | 43篇 |
1991年 | 26篇 |
1990年 | 20篇 |
1989年 | 9篇 |
1988年 | 21篇 |
1987年 | 8篇 |
1986年 | 11篇 |
1985年 | 8篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
挪威是世界上重要的石油生产国和出口国,对世界石油市场供需稳定有重要影响。本文在项目工作基础上,简要讨论了挪威油气资源管理与投资环境,包括油气资源潜力与油气工业概况、油气管理体制与框架、主要管理机构、主要油气法律、油气权设置、主要油气管理政策、油气税制等。 相似文献
12.
This study assesses surface urban heat island (SUHI) effects during heat waves in subtropical areas. Two cities in northern Taiwan, Taipei metropolis and its adjacent medium-sized city, Yilan, were selected for this empirical study. Daytime and night time surface temperature and SUHI intensity of both cities in five heat wave cases were obtained from MODIS Land-Surface Temperature (LST) and compared. In order to assess SUHI in finer spatial scale, an innovated three-dimensional Urbanization Index (3DUI) with a 5-m spatial resolution was developed to quantify urbanization from a 3-D perspective using Digital Terrain Models (DTMs). The correlation between 3DUI and surface temperatures were also assessed. The results obtained showed that the highest SUHI intensity in daytime was 10.2 °C in Taipei and 7.5 °C in Yilan. The SUHI intensity was also higher than that in non-heat-wave days (about 5 °C) in Taipei. The difference in SUHI intensity of both cities could be as small as only 1.0 °C, suggesting that SUHI intensity was enhanced in both large and medium-sized cities during heat waves. Moreover, the surface temperatures of rural areas in Taipei and Yilan were elevated in the intense heat wave cases, suggesting that the SUHI may reach a plateau when the heat waves get stronger and last longer. In addition, the correlation coefficient between 3DUI and surface temperature was greater than 0.6. The innovative 3DUI can be employed to assess the spatial variation of temperatures and SUHI intensity in much finer spatial resolutions than measurements obtained from remote sensing and weather stations. In summary, the empirical results demonstrated intensified SUHI in large and medium-sized cities in subtropical areas during heat waves which could result in heat stress risks of residents. The innovative 3DUI can be employed to identify vulnerable areas in fine spatial resolutions for formulation of heat wave adaptation strategies. 相似文献
13.
Christopher League 《The Cartographic journal》2019,56(2):117-133
The cartographic representation of geographic phenomena in the space–time cube comes with special challenges and opportunities when compared with two-dimensional maps. While the added dimension allows the display of attributes that vary with time, it is difficult to display rapidly varying temporal data given the limited display height. In this study, we adapt 2D cyclic point symbols to construct 3D surfaces designed along a helical path for the space–time cube. We demonstrate how these complex?3D helical surfaces can display detailed data, including data reported daily over 100 years and data reported in four-hour intervals over a year. To create the point symbols, each value is plotted along the curve of a helix, with each turn of the helix representing one year or week, respectively. The model is modified by varying the radii from the time axis to all points using the attribute value, in these cases maximum daily temperature and four-hourly ridership, and then creating a triangulated surface from the resulting points. Using techniques common to terrain representation, we apply hue and saturation to the surface based on attribute values, and lightness based on relief shading. Multiple surfaces can be displayed in a space–time cube with a consistent time interval facing the viewer, and the surfaces or viewer perspective can be rotated to display synchronized variations. We see this method as one example of how cartographic design can refine or enhance operations in the space–time cube. 相似文献
14.
张利君 《测绘与空间地理信息》2021,44(4):120-124
在研究和梳理气候评价技术方法和路线的基础上,利用ArcGIS与Python语言二次开发了一套气候评价工具箱,并以榆林市为例对该工具箱的实用性进行了验证.结果显示,该工具箱能够快速准确地辅助规划人员进行气候评价工作,大大提高了国土空间规划双评价的工作效率. 相似文献
15.
深入理解泛北极地区多年冻土活动层厚度的演变, 对于全球碳通量模拟、气候变化预测及泛北极地区冻融风险评估具有重要意义。目前开展的泛北极地区多年冻土活动层厚度模拟与分析, 大多无法全覆盖或空间分辨率过低(25 km或是更大), 在景观尺度(公里级)上的多年冻土活动层厚度变化特征仍有待解析, 尤其是关键基础设施区的活动层厚度变化仍不清楚。本研究基于站点监测数据、MOD11B3地表温度数据、MCD12C1土地覆盖数据, 采用Stefan模型, 在公里级空间分辨率上模拟泛北极地区2001年—2017年多年冻土活动层厚度, 并解析泛北极地区及主要油气区多年冻土活动层厚度时空变化格局及主要原因。研究发现: 2001年—2017年泛北极地区约有78.4%的冻土区域多年冻土活动层厚度呈现增长趋势, 尽管全区多年平均的增长速率为0.22 cm/a (p<0.05), 但具有较强的时空差异性。显著增长区主要集中在加拿大西北部的落基山脉及劳伦琴高原一带以及俄罗斯中西伯利亚高原中部地区, 增加速率主要在0.5—1 cm/a;而减少区主要分布在加拿大的哈得孙湾沿岸平原、拉布拉多高原一带, 俄罗斯的东西伯利亚山地北部、中西伯利亚高原的北部、贝加尔湖以东区域和泰拉尔半岛一带。泛北极地区主要油气区多年冻土活动层厚度也以增加为主, 80%以上的油气区呈现增加趋势, 增长速率在0.1—0.7 cm/a。泛北极地区多年冻土活动层厚度变化与气温变化在空间上具有较好的一致性;积雪厚度与活动层厚度关系复杂;不同植被类型的多年冻土活动层厚度有所差异(林地>草地>稀树草原>灌丛), 且多年冻土活动层厚度变化与植被转化方向一致。该成果将有助于深入理解北半球高纬度多年冻土区冻融格局, 尤其可为冻土区的油气设施冻融风险识别与防控提供参考。 相似文献
16.
We present the seasonal and geographical variations of the martian water vapor monitored from the Planetary Fourier Spectrometer Long Wavelength Channel aboard the Mars Express spacecraft. Our dataset covers one martian year (end of Mars Year 26, Mars Year 27), but the seasonal coverage is far from complete. The seasonal and latitudinal behavior of the water vapor is globally consistent with previous datasets, Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES), and with simultaneous results obtained from other Mars Express instruments, OMEGA and SPICAM. However, our absolute water columns are lower and higher by a factor of 1.5 than the values obtained by TES and SPICAM, respectively. In particular, we retrieve a Northern midsummer maximum of 60 pr-μm, lower than the 100-pr-μm observed by TES. The geographical distribution of water exhibits two local maxima at low latitudes, located over Tharsis and Arabia. Global Climate Model (GCM) simulations suggest that these local enhancements are controlled by atmospheric dynamics. During Northern spring, we observe a bulge of water vapor over the seasonal polar cap edge, consistent with the northward transport of water from the retreating seasonal cap to the permanent polar cap. In terms of vertical distribution, we find that the water volume mixing ratio over the large volcanos remains constant with the surface altitude within a factor of two. However, on the whole dataset we find that the water column, normalized to a fixed pressure, is anti-correlated with the surface pressure, indicating a vertical distribution intermediate between control by atmospheric saturation and confinement to a surface layer. This anti-correlation is not reproduced by GCM simulations of the water cycle, which do not include exchange between atmospheric and subsurface water. This situation suggests a possible role for regolith-atmosphere exchange in the martian water cycle. 相似文献
17.
本文以国际社会当前所有主要分配方案为基础,研究了2℃温升目标下中国2011-2050年间排放配额,通过控制变量进一步分析了配额分配对于主要参数设置的敏感性。研究结果表明,在与2℃目标相兼容的RCP2.6路径下,到2050年中国CO2累计排放配额范围为150~440 Gt CO2,基于等人均排放的分配方式已经变得最不利于中国。为维护合理的排放权益,在气候谈判中中国必须坚持对历史排放的完整追溯。全球排放路径的设定对中国配额也有着非常显著的影响,当2050年全球配额比2010年排放减少40%~50%时,中国在2℃目标下CO2累计配额范围为151~474 Gt CO2,当减少50%~60%时为138~478 Gt CO2,构成中国配额公平范围下限的方案受排放路径的影响更大。 相似文献
18.
19.
20.
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm–cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011–2040, 2041–2070 and 2071–2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm−2 mm−1, 2.07 kg hm−2 mm−1 and 1.92 kg hm−2 mm−1 during 2011–2040, 2041–2070 and 2071–2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future. 相似文献