首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   30篇
  国内免费   24篇
测绘学   47篇
大气科学   46篇
地球物理   78篇
地质学   28篇
海洋学   18篇
天文学   1篇
综合类   9篇
自然地理   77篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   22篇
  2019年   20篇
  2018年   7篇
  2017年   19篇
  2016年   15篇
  2015年   10篇
  2014年   18篇
  2013年   30篇
  2012年   17篇
  2011年   12篇
  2010年   7篇
  2009年   12篇
  2008年   8篇
  2007年   16篇
  2006年   13篇
  2005年   5篇
  2004年   12篇
  2003年   2篇
  2002年   4篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1984年   1篇
排序方式: 共有304条查询结果,搜索用时 31 毫秒
21.
高顶山矿区位于广安华蓥市城区东南约5km处。长期的采矿活动,导致区内矿山地质环境问题突出,严重影响华蓥山地区人民的生命财产安全。矿山地质环境问题亟待解决。本文通过分析区内主要存在的矿山地质环境问题,提出通过矿山地质灾害、矿山土地恢复、矿山地形地貌景观恢复治理,河道综合整治、道路修复、生态保育、产业提升等措施;消除安全隐患,保障区内人民生命财产安全;改善生态环境,实现华蓥山地区生态环境全面恢复,生态环境质量提升,提高环境承载力,实现区内"山青、水秀、林美、田良"的目标。并对区内的产业转型升级进行了探讨,提出将高顶山矿区建设成具有科普和教育价值的旅游景观目的地;利用矿区独具特色工业人文景观和别致的自然景观,将高顶山矿区建设成集"科普、休闲、康养、户外、探秘"五大功能于一体的矿山公园,推动矿业经济转型升级,促进产业结构转型和经济社会可持续发展。  相似文献   
22.
Using China's ground observations, e.g., forest inventory, grassland resource, agricultural statistics, climate, and satellite data, we estimate terrestrial vegetation carbon sinks for China's major biomes between 1981 and 2000. The main results are in the following: (1) Forest area and forest biomass carbon (C) stock increased from 116.5×106 ha and 4.3 Pg C (1 Pg C = 1015 g C) in the early 1980s to 142.8×106 ha and 5.9 Pg C in the early 2000s, respectively. Forest biomass carbon density increased form 36.9 Mg C/ha (1 Mg C = 106 g C) to 41.0 Mg C/ha, with an annual carbon sequestration rate of 0.075 Pg C/a. Grassland, shrub, and crop biomass sequestrate carbon at annual rates of 0.007 Pg C/a, 0.014―0.024 Pg C/a, and 0.0125―0.0143 Pg C/a, respectively. (2) The total terrestrial vegetation C sink in China is in a range of 0.096―0.106 Pg C/a between 1981 and 2000, accounting for 14.6%―16.1% of carbon dioxide (CO2) emitted by China's industry in the same period. In addition, soil carbon sink is estimated at 0.04―0.07 Pg C/a. Accordingly, carbon sequestration by China's terrestrial ecosystems (vegetation and soil) offsets 20.8%―26.8% of its industrial CO2 emission for the study period. (3) Considerable uncertainties exist in the present study, especially in the estimation of soil carbon sinks, and need further intensive investigation in the future.  相似文献   
23.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
24.
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.  相似文献   
25.
Global warming is likely modifying the hydrological cycle of forested watersheds. This report set as objectives to: a) assess the hydrological variables interception loss, I, potential and actual evapo-transpiration, E, Et, runoff, Q, and soil moisture content, θ; b) evaluate whether these variables are presenting consistent trends or oscillations that can be associated to global warming or climate variability; and c) relate θ to the number of wildfires and the burned area in Durango, Mexico. A mass balance approach estimated daily variables of the water cycle using sub-models for I and Et to calculate Q and θ for a time series from 1945 to 2007. Regression and auto-regressive and moving averaging (ARIMA) techniques evaluated the statistical significance of trends. The cumulative standardized z value magnified and ARIMA models projected statistically similar monthly and annual time series data of all variables of the water cycle. Regression analysis and ARIMA models showed monthly and annual P, I, E, and Et, Q, and θ do not follow consistent up or downward linear tendencies over time with statistical significance; they rather follow oscillations that could be adequately predicted by ARIMA models (r2 ≥ 0.70). There was a consistent statistical association (p ≤ 0.05) of θ with the number of wildfires and the area burned regardless of the different spatial scales used in evaluating these variables. The analysis shows seasonal variability is increasing over time as magnifying pulses of dryness and wetness, which may be the response of the hydrological cycle to climate change. Further research must center on using longer time series data, testing seasonal variability with additional statistical analysis, and incorporating new variables in the analysis.  相似文献   
26.
Streamwatcr chemistry was monitored for five years in six streams in a paired catchment experiment in Mendolong, Sabah, Malaysia, including controls in rain forest and secondary vegetation after the [Borneo fire] of 1982–3 and comparing the effects of different ways of establishing forest plantations with Acacia mangium. Three catchments were covered with selectively logged lowland hill dipterocarp forest (W4-W6) and three (W1-W3) with secondary vegetation after forest fires. The control catchments, W3 and W6 reported in this paper, had no treatments applied. Reference monitoring at all streams was for 25 months and the total period of study reported here is 64 months. The soils in the catchments were mainly Orthic Acrisol in W3 and Gleyic Podsol in W6 and a mix of both soil types in the other catchments. Element baseflow concentrations were generally low and not significantly different from stormflow concentrations for all streams during the reference period. Concentrations were also generally consistently low for the two control streams during the whole period of measurement. Chemical inputs as wet deposition were low as a result of a high input from local convection. The rain forest on the Podsol had a tight nutrient circulation indicated by small net losses of macronutrients. The Podsol was found to have poorer conditions for soil mineralization and more surficial runoff, resulting in higher loads of S, C and N in the organic phases, with higher organic C/N ratio, in the discharge. Nitrogen was found to accumulate in both catchments. An almost double accumulation of N in W3 was attributed to a larger biomass accumulation continuing after the forest fire 3–8 years earlier. On the other hand, the Acrisol in W3 had much larger net losses of S, Si, K, Ca, Mg and Na. Most of differences could be attributed to differences in weathering between the soils and local mineralogical differences.  相似文献   
27.
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with missing sample observations in inaccessible areas. Here, we report the results of a study conducted in a 15,867 km² area in the dry miombo woodlands of Tanzania, to quantify the contribution of existing canopy height and biomass maps to improving the precision of canopy height and AGB estimates locally. A local and a global height map and three global biomass maps, and a probability sample of 513 inventory plots were subject to analysis. Model-assisted sampling estimators were used to estimate mean height and AGB across the study area using the original maps and then with the maps calibrated with local inventory plots. Large systematic map errors – positive or negative – were found for all the maps, with systematic errors as great as 60–70 %. The maps contributed nothing or even negatively to the precision of mean height and mean AGB estimates. However, after being calibrated locally, the maps contributed substantially to increasing the precision of both mean height and mean AGB estimates, with relative efficiencies (variance of the field-based estimates relative to the variance of the map-assisted estimates) of 1.3–2.7 for the overall estimates. The study, although focused on a relatively small area of dry tropical forests, illustrates the potential strengths and weaknesses of existing global forest height and biomass maps based on remotely sensed data and universal prediction models. Our results suggest that the use of regional or local inventory data for calibration can substantially increase the precision of map-based estimates and their applications in assessing forest carbon stocks for emission reduction programs and policy and financial decisions.  相似文献   
28.
段晓峰  许学工 《地理科学》2008,28(5):667-671
应用生态位理论,以北京山区森林资源为研究对象,分析优势林分的空间分布及其资源利用和环境适应能力的差异。基于GIS方法,建立优势林分空间分布数据库以及资源梯度信息数据库,分别采用Levins公式和Smith公式,在水分、热量、光照和土壤质量4维环境因子梯度上测定了研究区8个优势林分的生态位宽度,采用Pianka公式测定生态位重叠。结果表明:Smith公式考虑资源可利用性,得到的生态位宽度更能客观地反映优势林分资源空间利用程度;研究区各优势林分重叠度普遍较大,反映了对环境要求的相似性及资源共享的趋势性。  相似文献   
29.
Classifier ensembles for land cover mapping using multitemporal SAR imagery   总被引:3,自引:0,他引:3  
SAR data are almost independent from weather conditions, and thus are well suited for mapping of seasonally changing variables such as land cover. In regard to recent and upcoming missions, multitemporal and multi-frequency approaches become even more attractive. In the present study, classifier ensembles (i.e., boosted decision tree and random forests) are applied to multi-temporal C-band SAR data, from different study sites and years. A detailed accuracy assessment shows that classifier ensembles, in particularly random forests, outperform standard approaches like a single decision tree and a conventional maximum likelihood classifier by more than 10% independently from the site and year. They reach up to almost 84% of overall accuracy in rural areas with large plots. Visual interpretation confirms the statistical accuracy assessment and reveals that also typical random noise is considerably reduced. In addition the results demonstrate that random forests are less sensitive to the number of training samples and perform well even with only a small number. Random forests are computationally highly efficient and are hence considered very well suited for land cover classifications of future multifrequency and multitemporal stacks of SAR imagery.  相似文献   
30.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号