首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7544篇
  免费   1380篇
  国内免费   2008篇
测绘学   353篇
大气科学   1745篇
地球物理   1818篇
地质学   4163篇
海洋学   1412篇
天文学   45篇
综合类   348篇
自然地理   1048篇
  2024年   51篇
  2023年   98篇
  2022年   247篇
  2021年   262篇
  2020年   323篇
  2019年   378篇
  2018年   298篇
  2017年   332篇
  2016年   333篇
  2015年   370篇
  2014年   423篇
  2013年   482篇
  2012年   425篇
  2011年   435篇
  2010年   385篇
  2009年   501篇
  2008年   489篇
  2007年   567篇
  2006年   491篇
  2005年   471篇
  2004年   427篇
  2003年   366篇
  2002年   358篇
  2001年   293篇
  2000年   293篇
  1999年   274篇
  1998年   226篇
  1997年   235篇
  1996年   221篇
  1995年   156篇
  1994年   164篇
  1993年   117篇
  1992年   104篇
  1991年   90篇
  1990年   59篇
  1989年   39篇
  1988年   51篇
  1987年   25篇
  1986年   14篇
  1985年   13篇
  1984年   7篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   11篇
  1979年   3篇
  1978年   5篇
  1977年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
On the basis of the analysis of the sea temperature data that are observed from the three automatic temperature line acquisition sysem mooring buoys deployed in the central South China Sea (SCS) during South China Sea monsoon experiment, vertical features of biweekly and synoptic variability are discussed. There are five vertical modes, that is, subsurface temperature variability is in phase with,out of phase with, leads to, lags the surface temperature variability, and at depths within the subsurface layer the upper and lower temperature variations are out of phase. The formation of these vertical modes is related to the property of low-level atmospheric forcing and to the background in atmosphere and ocean. Wind stress curl is the main driving factor in forming Modes 1 and 3, and wind stresses in forming Modes 2 and 4.  相似文献   
52.
珠江磨刀门水道咸潮上溯加剧的原因   总被引:1,自引:0,他引:1  
对磨刀门水道不同年份地形资料和多年枯季潮位资料进行了对比分析,结果表明:大规模的河床采砂,引起磨刀门上游河段河床大幅下切,河道深泓平均加深0.59~2.25 m,河槽容积平均增加8.91×106~12.11×106m3,使该河段枯季潮差增大,进潮量增加,潮汐动力增强,导致咸水界向上游河段推移;口门围垦整治后,磨刀门口门区由众多岛屿环抱而成的内海区变成人工导堤控制的一主一支两条水道,水域面积减少了80%,河槽容积减少了40%,深槽趋于顺直加深,使口门区的调淡作用消失,这是咸潮上溯的重要原因;根据多年水文频率分析,发生严重咸潮灾害时,西、北江枯季流量并非都是枯水流量,因此枯季上游来水量变化并不是近年来咸潮灾害加剧的主要原因。  相似文献   
53.
An understanding of the paleoenvironment and the main sedimentary processes behind preserved deposits is crucial to correctly interpret and represent lithofacies and facies associations in geomodels that are used in the hydrocarbon industry, particularly when a limited dataset of cores is available. In this paper a fairly common facies association is discussed containing massive sands - here defined as thick (>0.5 m) structureless sand beds devoid of primary sedimentary structures, or with some faint lamination - deposited by mass failures of channel banks in deep fluvial and estuarine channels. Amongst geologists it is generally accepted that liquefaction is the main trigger of large bank failures in sandy subaqueous slopes. However, evidence is mounting that for sand deposits a slow, retrogressive failure mechanism of a steep subaqueous slope, known as breaching, is the dominant process. A model of breaching-induced turbidity current erosion and sedimentation is presented that explains the presence of sheet-like massive sands and channel-like massive sands and the sedimentary structures of the related deposits. Sheet-like packages of spaced planar lamination that are found together with massive sand bodies in deposits of these environments are identified as proximal depositional elements of breach failure events. The model, acquired from sedimentary structures in deposits in the Eocene estuarine Vlierzele Sands, Belgium, is applied to outcrops of the Dinantian fluvial Fell Sandstone, England, and cores of the Tilje and Nansen fms (Lower Jurassic, Norwegian Continental Shelf). The possible breach failure origin of some other massive sands described in literature from various ancient shallow water environments is discussed. Breach failure generated massive sands possibly also form in deep marine settings. The potentially thick and homogeneous, well-sorted sand deposits bear good properties for hydrocarbon flow when found in such an environment. However, in case of deposition in an estuarine or fluvial channel, these sand bodies are spatially constricted and careful facies interpretation is key to identifying this. When constructing a static reservoir model, this needs to be considered both for in-place volume calculations as well as drainage strategies.  相似文献   
54.
A 1-g model experimental study was conducted to investigate the accumulated rotations and unloading stiffness of bucket foundations in saturated loose sand. One-way horizontal cyclic loading was applied to model bucket foundations with embedment ratios 0.5 and 1.0. Up to 104 cycles of loading were applied at a frequency of 0.2 Hz varying load amplitudes. The accumulated rotation of the bucket foundations increased with the number of cycles and the load amplitudes. Empirical equations were proposed to describe the accumulated rotation of the foundations. The unloading stiffness of foundations increased with the number of cycles but decreased with an increase in load amplitude. The initial unloading stiffness of L/D = 1.0 (L is skirt length; D is foundation diameter) was approximately twice that of L/D = 0.5. Excess pore water pressure difference of 50% was observed between L/D = 0.5 and 1.0. The suction and static capacity of the bucket increased with increase of bucket embedment ratio with a difference of 69.5% and 73.6% respectively between L/D = 0.5 and 1.0.  相似文献   
55.
Multiple stages of large-scale shelf sand ridges, including the shoreface-attached and the offshore types, have developed in the Miocene successions on the mid-shelf region of the Pear River Mouth Basin, northern South China Sea. Utilizing a high-quality 3D seismic data set, accompanying 2D seismic profiles and well logs, the morphology, architecture and genesis of these shelf sand ridges have been systematically investigated in this study. The ridges are of very large scale, with the largest one having a maximum height of 64 m, a width of more than 20 km and a length of 37 km within the 3D survey area. Being mound-shaped, they also display obvious asymmetry character, with the ridge crest preferentially located on the SE side. Three main internal components, including the ridge front, central ridge and the ridge tail, have been recognized through careful anatomy analysis of the two most well-imaged ridges, each displaying distinct expressions on seismic amplitudes and geometries. In the plan view, most of the shelf sand ridges are generally NE–SW oriented and widening to the SW direction. Scouring features can also be clearly observed along the SW direction, including scour depressions and linear sandy remnants. On well logs, the shelf sand ridges are represented by an overall coarsening-upward pattern. Intervals with blocky sandstones are preferentially present on higher locations due to a differential winnowing process controlled by shelf topography.Plenty of evidence indicates that these ridges were primarily formed by the reworking of forced regressive or lowstand deltaic deposits under a persistent southwesterly flowing current during the subsequent transgression. This very current is a composite one, which is speculated to consist of winter oceanic current, SCSBK (South China Sea Branch of Kuroshio) intrusion onto the shelf and internal waves propagating from the Luzon Strait. Tidal currents might have contributed to the SE growth of the ridge. In response to the reglaciation of Antarctic ice-sheet and the closure of Pacific-Indian ocean seaway in the middle Miocene, the intensification of the North Pacific western boundary current was considered to have potential links to the initiation of the shelf sand ridges at ∼12 Ma. The development of shelf ridges was terminated and replaced by rapid deltaic progradation at ∼5.5 Ma.  相似文献   
56.
通过对南黄海及周边船载测量重力数据、现代卫星测高重力数据、陆地测量重力数据以及地球重力模型等多来源重力数据进行整理和融合,对南黄海地区布格重力异常特征进行了分析。利用基于切割法和插值迭代法的大深度位场向下延拓技术的视密度反演法对南黄海布格重力进行处理和解释,结合山东和朝鲜半岛的地质信息,推断了扬子块体和中朝块体在南黄海海域的界限。中朝和扬子块体在海上的分界位置为千里岩北缘断裂,向NE延伸到125°E后,折向NNW向并在36°N附近再次转为NE向进入朝鲜半岛并经过洪城南侧继续以NE向延伸。扬子的北缘为苏鲁造山带,穿过黄海与京畿造山带相接,苏鲁超高压变质带对应洪城杂岩。  相似文献   
57.
王秀通  侯保荣  李焰 《海洋科学》2006,30(12):62-64
根据阴极保护的特点,建立了用于数值计算的模型;采用边界元方法对海泥介质中的阴极保护系统进行了计算,获得了海泥中钢管表面以及海泥介质内部的电位分布。将计算的结果与测量的数据进行比较,两者具有较好的一致性。  相似文献   
58.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   
59.
For South Korea, liquefaction potential along the western coast has not been widely assessed because South Korea is considered to be a low seismic hazard. However, recent earthquake events and historical records indicate that the seismic hazard of South Korea should not be ignored. Moreover, as artificial fills are extensively used along the western coast for development, liquefaction evaluation of the soils in this area is necessary. In this paper, we present: (1) the seismic characteristics of the study area; (2) procedures for evaluating liquefaction potential, focusing on the liquefaction potential index (LPI) approach; and (3) LPI distributions at several representative locations along the western coast of South Korea under various seismic scenarios. The liquefaction potential index represents the liquefaction potential over the upper 20 m of a boring or sounding. Using cone penetration test (CPT) and standard penetration test (SPT) data from two coastal sites, we compare and discuss CPT-based and SPT-based LPI values, particularly values computed in nonplastic, silt-rich soils. In these soils, it appears that the CPT yields lower liquefaction resistance, resulting in large LPI values. Finally, discussion and suggestions are provided for CPT- and SPT-based liquefaction assessment of low plasticity and high fines content soils.  相似文献   
60.
利用Argo 浮标资料研究西北太平洋三维声速分布特征   总被引:1,自引:0,他引:1  
利用西北太平洋海区2002~2009年的Argo浮标剖面温度、盐度资料构建成0.5°×0.5°水平分辨率的三维声速网格化资料,并据此分析该海区声速的空间分布及季节变化特征。研究表明:该海区10 m层等声速线分布的季节变化较为明显,春、冬季的等声速线几乎与纬线平行,黑潮流经区域等声速线呈现一定的弯曲。100 m层等声速线分布的季节变化较小:北赤道流区,等声速线从外海向近岸延伸;吕宋岛东南部沿海,等声速线向南弯曲;吕宋岛、台湾岛东部等声速线呈现偏北方向的弯曲;琉球群岛附近,等声速线朝北偏东方向弯曲。此外,研究海区存在深海声道,声道轴最深的区域主要在吕宋海峡和日本东南部海区,其中吕宋海峡处的声道轴有显著的季节变化特征。可见,利用Argo浮标资料可以初步得到西北太平洋声速的空间分布及其季节变化特征,随着Argo剖面资料的增多,对该海区的声速场认识将会愈加清晰。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号