首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   62篇
  国内免费   97篇
测绘学   6篇
大气科学   6篇
地球物理   143篇
地质学   266篇
海洋学   118篇
综合类   12篇
自然地理   51篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   14篇
  2020年   12篇
  2019年   16篇
  2018年   18篇
  2017年   16篇
  2016年   19篇
  2015年   9篇
  2014年   19篇
  2013年   23篇
  2012年   27篇
  2011年   10篇
  2010年   20篇
  2009年   25篇
  2008年   29篇
  2007年   25篇
  2006年   28篇
  2005年   24篇
  2004年   27篇
  2003年   28篇
  2002年   31篇
  2001年   15篇
  2000年   14篇
  1999年   9篇
  1998年   23篇
  1997年   12篇
  1996年   14篇
  1995年   16篇
  1994年   11篇
  1993年   7篇
  1992年   13篇
  1991年   6篇
  1990年   5篇
  1989年   11篇
  1988年   10篇
  1987年   1篇
  1986年   2篇
  1978年   1篇
排序方式: 共有602条查询结果,搜索用时 955 毫秒
111.
Tectonic Evolution of the Himalayan Collision Belt   总被引:5,自引:0,他引:5  
This paper discusses the tectonic divisions of the Himalayan collision belt anddeals with the tectonic evolution of the collision belt in the context of crustal accretion in thefront of the collision belt, deep diapirism and thermal-uplift extension and deep material flow-ing of the lithosphere-backflowing. Finally it proposes a model of the tectonic evolution-progressive intracontinental deformation model-of the Himalayan belt.  相似文献   
112.
A huge hydrothermal field, named the "Hakurei Sulfide Deposit" (HSD) was discovered in the North Myojin Rift (NMR), Izu–Bonin Back-Arc Rift (BAR) during the 2003 survey cruise of R/V Hakurei-maru No.2 . This paper investigates the geotectonic features and the tectonic setting of ore deposits between the NMR and the Hokuroku Basin, which is representative of kuroko fields in Japan. The topographic features of the NMR and the Hokuroku Basin are similar. Both have a clear ring structure surrounded by faults and the east–west width is almost the same. Many kuroko deposits were formed on the extrusion centers of the five pre-mineral acidic volcanic complexes, located in a loop inside the Hokuroku Basin. In the case of the NMR, seven submarine volcanoes are also located in a loop, and the HSD formed inside the summit caldera of Bayonnaise Knoll, which is one of the seven volcanoes. These topographic similarities highlight that the NMR is a modern analog of the Hokuroku Basin. Identifying such similarities is extremely useful when prospecting kuroko deposits on land equivalents as well as on the other segments of the Izu–Bonin BAR. The probability of finding kuroko deposits on land is expected to increase when the following are identified: (i) location of back-arc rift and the volcanic front; (ii) direction of the arc–trench system and intra-rift faults (and/or fracture zone); (iii) position of submarine volcanoes surrounding a back-arc rift; and (iv) intersections of a caldera fault and intra-rift fault (and/or fracture zone) inside the summit caldera of submarine volcanoes. Within these aforementioned points a ring structure, acidic volcanic complexes that circle the circuit and submarine calderas along the volcanic front, are an important indication of submarine hydrothermal deposits.  相似文献   
113.
选择以辽西为中心,近东西向延伸800km的辽蒙地质走廊为研究区,通过年代学研究,确认130Ma以来的中、新生代火山活动对称分布的时空格局具有“中间老、两侧新”的特点,而且随着时间的推移,软流圈来源的岩浆向东西两侧侧向流动,岩浆来源不断加深。在此基础上提出“软流圈底辟体上涌和水平侧向流动”的模式。  相似文献   
114.
One of the major causes of earthquake damage is liquefaction. However, it doesn't result in severe harm unless it leads to ground surface damage or ground failure. Therefore, prediction of potential for ground surface damage due to liquefaction is one of the important issues in microzonation studies for liquefaction-induced damage in areas with high seismicity. In 1985, based on a database compiled from Chinese and Japanese earthquakes, Ishihara considered the influence of the non-liquefied cap soil on the occurrence or non-occurrence of ground failure (mainly sand boiling), and proposed an empirical approach to predict the potential for ground surface damage at sites susceptible to liquefaction. However, some investigators indicated that this approach is not generally valid for sites susceptible to lateral spread or ground oscillation. In this study, a contribution to improve the approach by Ishihara is made. For the purpose, an index called liquefaction severity index (LSI) and data from two devastating earthquakes, which occurred in Turkey and Taiwan in 1999, were employed. The data from liquefied and non-liquefied sites were grouped and then analysed. Based on the observations reported by reconnaissance teams who visited both earthquake sites and the results of the liquefaction potential analyses using the filed-performance data, a chart to assess the potential for ground surface disruption at liquefaction-prone areas was produced. The analyses suggest that the procedure proposed by Ishihara is quite effective particularly for the occurrence of sand boils, while the bounds suggested in this method generally may not be valid for the prediction of liquefaction-induced ground surface disruption at sites susceptible to lateral spreading. The chart proposed in this study shows an improvement over the Ishihara's approach for predicting the liquefaction-induced ground surface damage. The microzonation maps comparing the liquefaction sites observed along the southern shore of Izmit Bay and in Yuanlin, and the surface damage and non-damage zones predicted from the proposed chart can identify accurately the liquefaction (sand boiling and lateral spreading) and no-liquefaction sites.  相似文献   
115.
The Kocaeli earthquake (M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of ?zmit Bay and Sapanca Lake between the cities of Yalova and Adapazar? in the west and east, respectively. In this study, three sites founded on delta fans, namely De?irmendere Nose, Yeniköy tea garden at Seymen on the coast of ?zmit Bay, and Vak?f Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at De?irmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at De?irmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.  相似文献   
116.
F. Suter  M. Sartori  R. Neuwerth  G. Gorin   《Tectonophysics》2008,460(1-4):134-157
The northern Andes are a complex area where tectonics is dominated by the interaction between three major plates and accessory blocks, in particular, the Chocó-Panamá and Northern Andes Blocks. The studied Cauca Valley Basin is located at the front of the Chocó-Panamá Indenter, where the major Romeral Fault System, active since the Cretaceous, changes its kinematics from right-lateral in the south to left-lateral in the north. Structural studies were performed at various scales: DEM observations in the Central Cordillera between 4 and 5.7°N, aerial photograph analyses, and field work in the folded Oligo-Miocene rocks of the Serranía de Santa Barbara and in the flat-lying, Pleistocene Quindío-Risaralda volcaniclastic sediments interfingering with the lacustrine to fluviatile sediments of the Zarzal Formation.The data acquired allowed the detection of structures with a similar orientation at every scale and in all lithologies. These families of structures are arranged similarly to Riedel shears in a right-lateral shear zone and are superimposed on the Cretaceous Romeral suture.They appear in the Central Cordillera north of 4.5°N, and define a broad zone where 060-oriented right-lateral distributed shear strain affects the continental crust. The Romeral Fault System stays active and strain partitioning occurs among both systems. The southern limit of the distributed shear strain affecting the Central Cordillera corresponds to the E–W trending Garrapatas–Ibagué shear zone, constituted by several right-stepping, en-échelon, right-lateral, active faults and some lineaments. North of this shear zone, the Romeral Fault System strike changes from NNE to N.Paleostress calculations gave a WNW–ESE trending, maximum horizontal stress, and 69% of compressive tensors. The orientation of σ1 is consistent with the orientation of the right-lateral distributed shear strain and the compressive state characterizing the Romeral Fault System in the area: it bisects the synthetic and antithetic Riedels and is (sub)-perpendicular to the active Romeral Fault System.It is proposed that the continued movement of the Chocó–Panamá Indenter may be responsible for the 060-oriented right-lateral distributed shear strain, and may have closed the northern part of the Cauca Valley, thereby forming the Cauca Valley Basin.Conjugate extensional faults observed at surface in the flat-lying sediments of the Zarzal Formation and Quindío-Risaralda volcaniclastic Fan are associatedwith soft-sediment deformations. These faults are attributed to lateral spreading of the superficial layers during earthquakes and testify to the continuous tectonic activity from Pleistocene to Present.Finally, results presented here bring newinformation about the understanding of the seismic hazard in this area: whereas the Romeral Fault Systemwas so far thought to be themost likely source of earthquakes, themore recent cross-cutting fault systems described herein are another potential hazard to be considered.  相似文献   
117.
118.
119.
尽管Pn波品质因子(PnQ)对上地幔流变性质研究及核试验监测有着深刻含义,迄今它仍然是一个难以准确测定的地震参量.这是因为除了众所周知的影响所有短周期Q的干扰因素外,在所有主要的区域震相中,地震工作者对Pn波的传播模式及几何扩散函数G=d-k中的扩散率指数k了解最少.不同的研究者任意地假定不同的常数k,因此常算出非常不同的PnQ值(例如文献[1]、[2]).实际上,理论研究已表明,k随频率而变,变化的形式取决于上地幔的速度结构.本文介绍用一推广的逆向双台法同时测定加拿大东部的PnQ和k值.我们的结果表明:1.加拿大东部的Pn波是由一系列的干涉潜波叠加而形成;2.视PnQ(散射和固有非弹性的综合效应)随频率而增加,在15Hz处接近2000.  相似文献   
120.
Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ~1-2Ma. Estimates of extension (~3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号