首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   9篇
地球物理   5篇
地质学   2篇
天文学   297篇
自然地理   1篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2011年   14篇
  2010年   9篇
  2009年   22篇
  2008年   19篇
  2007年   16篇
  2006年   11篇
  2005年   32篇
  2004年   18篇
  2003年   13篇
  2002年   53篇
  2001年   8篇
  2000年   10篇
  1999年   4篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   8篇
  1994年   2篇
  1993年   8篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1987年   1篇
排序方式: 共有305条查询结果,搜索用时 921 毫秒
91.
A search for the most likely parent bodies of multi-km near-Earth asteroids (NEAs) is attempted, in the framework of a scenario based on a few simple assumptions. (1) Multi-km NEAs are produced by collisional fragmentation of single parent bodies. (2) The fragments are injected into either the 3/1 mean-motion resonance with Jupiter or the ν6 secular resonance, or they achieve Mars-crossing orbits. (3) The collisional events responsible for the production of multi-km NEAs do not produce observable dynamical families. We show that a limited number of potential parent bodies of multi-km NEAs compatible with the above assumptions do exist in the asteroid Main Belt. It is not clear whether these objects can likely explain the current inventory of known NEAs having sizes around 1-2 km. Our results seem to indicate that the assumed scenario is not completely adequate to justify the number of observed NEAs larger than 2 km. This preliminary analysis must be complemented by a more precise analysis of the rates of occurrence of NEA-feeding events. If present results are confirmed, the conclusion that the origin of multi-km NEAs must be explained by different models, based on long-term dynamical diffusion produced by the interplay of collisional, gravitational, and nongravitational mechanisms in the Main Belt, plus a possible cometary contribution, will be strengthened.  相似文献   
92.
The results of photometric observations of seven main-belt asteroids with moderate surface albedos are presented. New magnitude-phase dependences were obtained for these asteroids: 5 Astraea (down to a phase angle of 0.3°, S type), 75 Eurydike (0.1°, M), 77 Frigga (0.9°, M), 105 Artemis (0.3°, C), 119 Althaea (0.3°, S), 124 Alkeste (0.1°, S), and 201 Penelope (0.5°, M). The parameters of approximating functions and the amplitudes of the opposition effect of these asteroids were determined. The obtained data allowed us to improve values of the rotation periods for some of them: 5 Astraea (16.815±0.002 h), 105 Artemis (18.56±0.01 h), 119 Althaea (11.466±0.001 h), and 124 Alkeste (9.907±0.001 h).  相似文献   
93.
J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234) developed a nonlinearized, finite-difference solution to the heat equation that yields orbital rates of change due to the Yarkovsky effect for small, spherical, bare-rock asteroids and used it to investigate changes in semimajor axis caused by the Yarkovsky effect. Here, we present results for changes in eccentricity and longitude of periapse. These results may be useful as benchmarks for simplified analytical solutions. Moreover, we explore a range of parameters, some of which are inaccessible to most other approaches. Instantaneous rates can be quite fast: For a 1-m scale body rotating with a 5-h period, de/dt can be as fast as 0.1 per million years (da/dt rates for similar test bodies were reported in J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234)). For more typical rotation periods, these rates would be considerably slower. Output from our calculation method could be used in simulations of asteroid population evolution such as that by W. F. Bottke, D. P. Rubincam, and J. A. Burns (2000, Icarus145, 301-331). On long time scales, impacts would randomize the spin axis before significant orbital evolution could occur. Nevertheless, occasional favorable rotation states might persist long enough for substantial eccentricity changes to accumulate (1) if the body is decoupled from the main belt (e.g., many near-Earth asteroids), (2) if the population of very small (mm-scale) main-belt impactors is less than expected, or (3) if our numerical results are scaled up to km-size bodies.  相似文献   
94.
本文主要阐述了近年来我们在近地小行星轨道演化研究所获得的一些基本结果,即合理的力学模型和相应的有效算法,并以实际预报算例与有关权威性的结果作了比较,证实这些研究结果确实是可信的。  相似文献   
95.
We investigate the orbital evolution of both real and hypothetical Edgeworth–Kuiper Objects in order to determine whether any conclusions can be drawn regarding the existence, or otherwise, of the tenth planet postulated by Murray. We find no qualitative difference in the orbital evolution, and so conclude that the hypothetical planet has been placed on an orbit at such a large heliocentric distance that no evidence for the existence, or non-existence, can be found from a study of the known Edgeworth–Kuiper Objects.  相似文献   
96.
Jupiter‐family comets (JFCs) may often, closely and/or slowly approach Jupiter. A list of their close approaches within 0.21 AU from Jupiter between 1970 and 2030 is presented to determine the typical changes in some of their orbital elements and their relation to any triggered activity. A few JFCs from the list were temporary satellites of Jupiter. There are also several JFCs which originally had asteroidal provisional designations due to their low activity at discovery. But Jupiter is also approached by asteroids. The presented list of their approaches within 0.60 AU from Jupiter between 1960 and 2040, together with their orbital changes can be compared with the list of comets. Some of the orbital changes are large enough to cause an extremely low or short‐lived activity. Usually, quick and dedicated observations by large‐aperture telescopes are missing to confirm or refute it. Currently, the most important cometary candidate among Jupiter approaching asteroids is 2004 FY140. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
97.
Conventional planet formation models via coagulation of planetesimals require timescales in the range of several 10 or even 100 Myr in the outer regions of a protoplanetary disk. But according to observational data, the lifetime of a protoplanetary disk is limited to about 6 Myr. Therefore the existence of Uranus and Neptune poses a problem. Planet formation via gravitational instability may be a solution for this discrepancy. We present a parameter study of the possibility of gravitationally triggered disk instability. Using a restricted N‐body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M can probably induce gravitational instabilities in the pre‐planetary solar disk for prograde passages with minimum separations below 80‐170 AU. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters. The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the formation of Uranus and Neptune. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
98.
J. TicháM. Tichý  M. Ko?er 《Icarus》2002,159(2):351-357
The number of known near-Earth asteroids (NEAs) has increased rapidly in recent years due to large surveys. This discovery process has to be followed by follow-up observations to obtain a sufficient number of precise astrometric data needed for an accurate orbit determination of newly discovered bodies.Accurate orbit determination requires observations from at least two oppositions. If asteroids are not found in the next apparition, different from the discovery apparition, then they can be considered lost. This is particularly embarrassing for NEAs. If data for different apparitions are not found in the course of precovery surveys or in other archive data, then it is necessary to prepare targeted observations of a particular NEA in the second convenient apparition. Therefore NEA recovery is a very important part of NEA follow-up.We discuss here methods, techniques, and results of planned recoveries at the Klet' Observatory using a 0.57-m telescope equipped with a CCD detector. The Klet' NEA recovery subprogram has brought 21 planned NEA recoveries since 1997, including seven NEAs belonging to the potentially hazardous asteroid category.We briefly mention the overall work on NEA recoveries provided by several NEO follow-up programs as well as the need for communication resources supporting astrometric observers. Finally we present here a planned extension of the Klet' NEA recovery subprogram to fainter objects by means of a new 1.06-m reflector.  相似文献   
99.
Masahisa Yanagisawa 《Icarus》2002,159(2):300-305
We investigate the spin up of nonspherical asteroids by successive random collisions with other smaller asteroids. The spin-up rates are calculated for ellipsoidal and spherical bodies of the same mass. Then, we derive the relative spin-up efficiency, that is, the ratio of the spin-up rate of the ellipsoidal body to that of the spherical body. We suppose a collisional process in our model different from that adopted in the previous works. The results show that ellipsoidal bodies can spin up more rapidly than spherical bodies.  相似文献   
100.
Interactions between an initially uniformly rotating body with a second degree and order gravity field and a sphere are analyzed. Explicit predictions of the change in rotational angular momentum of the non-spherical body are derived over one interaction (i.e. periapsis passage) between the bodies. The estimated changes are expressed in terms of trigonometric functions and generalized Hansen coefficients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号