首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   4篇
地球物理   17篇
地质学   12篇
自然地理   6篇
  2021年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
31.
基于实验结果讨论断层破裂与强震物理过程的若干问题   总被引:9,自引:0,他引:9  
基于断层摩擦滑动实验、含凹凸体断层的变形破坏实验、断层撕裂扩展的实验、交叉断层的变形实验等多种实验结果并结合前人的工作 ,讨论了与断层破裂与强震物理过程相关的若干问题。研究表明 ,断层的整体滑动引起其两侧块体弹性应变的释放 ,是强震发生的原因 ,因此构造活动区具有较大尺度、结构连续且简单、介质均匀的断层 (或断层段 )是产生强震必备的构造条件 ,深部新生断层(盲断层 )向上撕裂扩展产生强震 ,尚需“弱层”提供“解耦”条件以便断层发生整体滑动。强震孕育过程中包含着凹凸体的破裂 ,断层面上凹凸体的尺度、强度及数量决定着前震活动的特征、强震动态破裂过程以及前兆现象。由断层分割的块体通过边界断层的交替滑动、以“框动”的方式运动 ,因此块体周边的断层上强震活动具有交替性。  相似文献   
32.
Introduction Strong and large earthquakes are prepared and generated on specific segments of active fault zones, especially on the asperity parts of the zones (Aki, 1984; Wiemer, Wyss, 1997; Wyss, et al, 2000). Therefore, both the faulting-behavior identification and the rupture segmentation mainly based on the method of active tectonics are always important aspects in active fault research (DING, et al, 1993). The purposes of the two aspects of research focus on determining fault units tha…  相似文献   
33.
We suggest to consider the breaking of an asperity,i.e., a small contact patch between fault walls, as a typical subsource producing an elementary short-period radiation pulse from a source of a large earthquake. Based on the results ofDas andKostrov we propose formulas to describe amplitudes and spectra of acceleration for a multiasperity fault/source model. The stress drop over an asperity is determined in several ways; the estimates agree to give the average value of several hundred bar. Theoretical acceleration spectral shapes for the case of similar asperities agree with the observed ones, they reproduce such features as lower-frequencyf 1 slope, peak, and high-frequency cutoff. The statistical stress-drop distribution over the population of asperities, and also the related distribution of peak accelerations are discussed. There distributions are found to be the power-law ones with exponent near to 2. This means that acceleration peaks are formed normally by breaking of individual asperities. We consider small earthquakes as produced by breaking of single asperities, this idea explains the observed correlation between the upper cutoff frequency of acceleration spectrum and the typical characteristic frequency of small earthquakes.  相似文献   
34.
Seismological models for mining-induced seismic events   总被引:1,自引:0,他引:1  
  相似文献   
35.
Slip-softening instability on a vertical strike-slip fault with asperities has been analysed. The fault strength is uniform in depth, but the strength is nonuniform in the strike direction, i.e., there are asperities on the fault. These asperities and other segments of the fault have the same type of constitutive law but different peak stresses. The material surrounding the fault is represented by elastic plates, of which the top and bottom surfaces are stress-free.We use a finite element method to study the evolution of theoretical displacement, stress and strain field with a growing displacement applied at the remote plate ends. The slip and frictional stress are obtained as part of the solution. We have compared the difference of theoretical displacement, strain field and the distribution of frictional stress on the fault between unstable and stable slip. In addition, we have studied the effect of size and strength of asperities on instability, and the softening behaviour of asperities before instability.We find that (1) the failure of the fault zone may be due to either dynamic instability or rapid quasistable slip. A general characteristic of unstable mode is that slippage, on some parts of asperities increases indefinitely for a small finite increase in remote imposed displacement until, immediately before the unstable slip; (2) the size and peak strength of asperities have a large effect on instability. Reducing the size and peak strength of asperities tends to replace inertially unstable deformation with stable deformation; (3) the location with maximum acceleration during unstable slip, as the plausible nucleating seismic source, is in asperities; (4) the shapes of the changes in theoretical stress and strain at a given location, caused by the nonlinear constitutive property of the fault, are all similar whether instability, happens or not. This fact suggests that the changes of peak type or bend type in crustal deformation are not required for earthquake instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号