首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6245篇
  免费   1131篇
  国内免费   1294篇
测绘学   1060篇
大气科学   1785篇
地球物理   1192篇
地质学   2333篇
海洋学   813篇
天文学   63篇
综合类   493篇
自然地理   931篇
  2024年   37篇
  2023年   88篇
  2022年   194篇
  2021年   304篇
  2020年   313篇
  2019年   342篇
  2018年   249篇
  2017年   293篇
  2016年   351篇
  2015年   334篇
  2014年   494篇
  2013年   467篇
  2012年   428篇
  2011年   461篇
  2010年   360篇
  2009年   416篇
  2008年   411篇
  2007年   485篇
  2006年   401篇
  2005年   306篇
  2004年   279篇
  2003年   236篇
  2002年   216篇
  2001年   209篇
  2000年   151篇
  1999年   134篇
  1998年   140篇
  1997年   95篇
  1996年   93篇
  1995年   79篇
  1994年   72篇
  1993年   62篇
  1992年   47篇
  1991年   31篇
  1990年   23篇
  1989年   16篇
  1988年   17篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有8670条查询结果,搜索用时 93 毫秒
151.
The purpose of this study is to apply time series analysis to investigate whether the groundwater quality in the coastal area is affected by the tide. Continuous and regular in situ monitoring data of electrical conductivity (EC) and groundwater level, and tidal level data measured by the National Oceanographic Research Institute were used for the time series analysis. Through the time series analysis, it is known that EC and groundwater level conspicuously fluctuate with two periodicities (15.4 and 0.52-day), which is very similar to those of the tide. Also the behaviors of their fluctuations vary in accordance with the tidal period. These indicate that the groundwater quality has been mainly controlled by the tidal level, and the strength of tidal effect on the groundwater quality is different according to the tidal period.  相似文献   
152.
以深圳某建筑深基坑滑塌为例,在现场实物和相关资料调查的基础上,从基坑支护的设计、施工、监测以及质量安全管理等方面对基坑滑塌事故的原因进行了较为全面的分析和探讨,认为导致该基坑支护工程滑塌的主要原因是土钉和锚索抗拔力不足.最后针对目前深基坑工程中普遍存在的问题提出了加强设计方案的审查、加强施工管理、加强土钉墙研究的建议.  相似文献   
153.
A study has been conducted on the status of water quality in two disused man made lakes, which have potential for cage aquaculture project. This study highlights the quality of water analyzed with reference to various physical - chemical parameters in two selected lakes and their suitability for fish farming. A number of parameters were measured including the amount of NH3 - N, NO3 - N, NO2 - N and total phosphorus while in - situ measurement including DO, pH, temperature, conductivity, TDS and Secchi disk visibility. Beside the physical -chemical of water, the location, morphometry and climate conditions were also investigated. The chemical data analyzed for six months indicated that Lake A and Lake B are characterized by relatively high DO, slightly neutral pH and low TSS. The concentration of NH3 -N and NO2 -N was very low (0. 058 mg/L and 0. 04 mg/L, respectively) and total phosphorus was usually in low concentration and sometimes would seem negligible. Besides, NO3 - N occurred in slightly higher concentration (1.75 mg/L). Results obtained indicated that the study site has high potentiality for development of inland fisheries practices.  相似文献   
154.
元江-红河跨境水质环境问题和保护研究   总被引:1,自引:0,他引:1  
在红河干流不同污染流域,设立5个环境监测断面,同时选定人烟稀少、无工业、自然条件良好的李仙江加禾断面为对照。利用1999~2002年对水质影响大的DO、COD、BOD5、NH 3-N、NO3-N、NO 2-N、Cu、Pb、Cd、T-P、石油类及SS 12项污染物,均在枯、丰、平3个不同水期采样监测,将监测结果做数理统计分析,研究污染物的迁移、转化规律,并得出:出境断面NH 3-N平均含量高达0.18~0.86m gL/,T-P高达0.045~0.315m g/L,SS高达69~3412m gL/,从而提出小流域治理、退耕还林、城市水网改造及控制含磷洗涤剂使用的建议。  相似文献   
155.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
156.
Shrink–swell soils can cause distresses in buildings, and every year, the economic loss associated with this problem is huge. This paper presents a comprehensive system for simulating the soil–foundation–building system and its response to daily weather conditions. Weather data include rainfall, solar radiation, air temperature, relative humidity, and wind speed, all of which are readily available from a local weather station or the Internet. These data are used to determine simulation flux boundary conditions. Different methods are proposed to simulate different boundary conditions: bare soil, trees, and vegetation. A coupled hydro‐mechanical stress analysis is used to simulate the volume change of shrink–swell soils due to both mechanical stress and water content variations. Coupled hydro‐mechanical stress‐jointed elements are used to simulate the interaction between the soil and the slab, and general shell elements are used to simulate structural behavior. All the models are combined into one finite element program to predict the entire system's behavior. This paper first described the theory for the simulations. A site in Arlington, Texas, is then selected to demonstrate the application of the proposed system. Simulation results are shown, and a comparison between measured and predicted movements for four footings in Arlington, Texas, over a 2‐year period is presented. Finally, a three‐dimensional simulation is made for a virtual residential building on shrink–swell soils to identify the influence of various factors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
157.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
158.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
159.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
160.
Thanks to its simple division into agricultural and forestry land use, the Corbeira catchment (Galicia, Spain) is used as a case study to build a predictive model using hydrogeochemical signatures. Stream data acquired under recessional flow conditions over a one year period were obtained from a sampling station near the downstream end of the catchment, and using principal component analysis, it is shown that some of the analytical parameters are covariant, and some are negatively correlated. These findings support inferences about the pathways of rainfall in the catchment. Specific signatures may be associated with the dominant hydrological source, either surface runoff or subsurface waters: additionally, the dominant land use in that part of the catchment, where the flow originated, can also be predicted. The dominant runoff shows a strong covariance between suspended solids (SS) and particulate phosphorus (PP), with a clear negative correlation with pH. Dissolved organic carbon (DOC) data are associated with this covariant set when these compounds are available in the soils in question. Dissolved phosphorus, total organic nitrogen and dissolved nitrates are also associated with the same covariant set when the runoff flows through areas of extensive agricultural use. The SS ? PP covariance is less significant at lower flows. Typical base flow regimes show a significant covariance between salinity and pH, with a marked negative correlation with SS ? PP set, confirming the dominance of subsurface waters in the baseflow, as expected. Seasonally divergent DOC ? SS behaviour proves to be a useful tracer for rainfall regimes. The DOC trend shows a sinusoidal annual variation in amplitude, determined by the rainfall regime. As a result, flow from the catchment is dominated by surface water whenever there is synchronicity between the peaks of DOC and SS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号