首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2453篇
  免费   231篇
  国内免费   289篇
测绘学   89篇
大气科学   208篇
地球物理   304篇
地质学   434篇
海洋学   432篇
天文学   8篇
综合类   178篇
自然地理   1320篇
  2024年   15篇
  2023年   31篇
  2022年   106篇
  2021年   137篇
  2020年   109篇
  2019年   121篇
  2018年   104篇
  2017年   89篇
  2016年   114篇
  2015年   115篇
  2014年   145篇
  2013年   146篇
  2012年   128篇
  2011年   143篇
  2010年   124篇
  2009年   141篇
  2008年   119篇
  2007年   122篇
  2006年   146篇
  2005年   166篇
  2004年   91篇
  2003年   99篇
  2002年   82篇
  2001年   76篇
  2000年   80篇
  1999年   47篇
  1998年   29篇
  1997年   44篇
  1996年   20篇
  1995年   17篇
  1994年   15篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
排序方式: 共有2973条查询结果,搜索用时 281 毫秒
651.
Fens, which are among the most biodiverse of wetland types in the USA, typically occur in glacial landscapes characterized by geo‐morphologic variability at multiple spatial scales. As a result, the hydrologic systems that sustain fens are complex and not well understood. Traditional approaches for characterizing such systems use simplifying assumptions that cannot adequately capture the impact of variability in geology and topography. In this study, a hierarchical, multi‐scale groundwater modelling approach coupled with a geologic model is used to understand the hydrology of a fen in Michigan. This approach uses high‐resolution data to simulate the multi‐scale topographic and hydrologic framework and lithologic data from more than 8500 boreholes in a statewide water well database to capture the complex geology. A hierarchy of dynamically linked models is developed that simulates groundwater flow at all scales of interest and to delineate the areas that contribute groundwater to the fen. The results show the fen receiving groundwater from multiple sources: an adjacent wetland, local recharge, a nearby lake and a regional groundwater mound. Water from the regional mound flows to an intermediate source before reaching the fen, forming a ‘cascading’ connection, while other sources provide water through ‘direct’ connections. The regional mound is also the source of water to other fens, streams and lakes in this area, thus creating a large, interconnected hydrologic system that sustains the entire ecosystem. In order to sustainably manage such systems, conservation efforts must include both site‐based protection and management, as well as regional protection and management of groundwater source areas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
652.
中国生态环境遥感四十年   总被引:2,自引:0,他引:2  
生态环境是人类社会生存与发展的基础。快速发展的遥感技术显著推动着生态环境遥感监测能力的提升,有效支撑了国家生态文明建设。从1980年天津—渤海湾环境遥感试验开始,经历了近40年的发展,遥感监测技术已经广泛应用于生态、大气、水、土壤等生态环境保护各个方面,取得显著成效。本文回顾了我国生态环境遥感技术近40年的发展,通过典型或重要应用案例,系统梳理了遥感技术在生态环境监测、对地观测能力、支撑生态文明建设等方面应用的发展历程。生态环境遥感监测能力发展主要表现在应用领域逐步扩大、监测精度明显提升、监测时效大幅增强;对地观测能力发展主要分为国外卫星为主期、环境卫星发展期、高分卫星应用期3个阶段;支撑生态文明建设的重大事件主要包括全国生态状况定期调查评估、污染防治攻坚战、应急与监督执法等方面。本文结合国家战略和技术发展,对今后生态环境遥感的发展提出了一些思考。  相似文献   
653.
Declining groundwater levels caused by irrigation is the main problem for agricultural development in Northern China. Due to both economics and increased population, surface water has become almost non‐existent and groundwater is the only water resource left. Currently the groundwater is declining at a rate between 50 and 100 cm per year. Sustainable development in Northern China requires effective management of the groundwater resources. In this study, the effect of future irrigation patterns on the decline of the groundwater table is examined with the aid of MODFLOW. MODFLOW was calibrated for five observation wells in the county. The calibrated model fitted the observed data well over a 7‐year period. The simulated results showed that the groundwater decline would be decreased, and perhaps halted, by decreasing the use of irrigation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
654.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   
655.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
656.
Abstract

Proper agricultural land management strategies improve soil structural properties, thereby reducing soil loss by water erosion. This study was conducted to estimate soil losses from plots of different agricultural land management using the Water Erosion Prediction Project (WEPP) (95.7) model. The study took place in a semiarid region in Kenya. The mean annual rainfall was 694 mm. The WEPP (95.7) model was initially used to estimate total sediment loading from the catchment into a reservoir. The estimate was about 2871 t corresponding to an average sedimentation rate of 1063 t km?2 year?1, which was about 76% of the measured total sediment inflow into the reservoir. Soil losses were estimated within 10 plots on the catchment of different sizes and slopes with the following treatments: conventional tillage (hand hoeing) with maize and soybean intercropping (HOCOBE); conservation tillage (disc plough) with maize and soybean intercropping (COBEAN); conservation tillage with only maize cultivation (CNTCORN); and conservation tillage with only soybean cultivation (CNTBEAN). The soil loss reduction of COBEAN, CNTCORN and CNTBEAN relative to HOCOBE ranged between 27–47%, 16–29% and 12–25%, respectively, depending on the size and slope of the plot. In general, conservation tillage reduced soil loss relative to conventional tillage. However, with conservation tillage, the single cropping system resulted in greater soil loss than the intercropping system. In the case of single cropping with conservation tillage, the soil loss reduction for maize ranged between 4 and 9%, relative to soybean. Overall, the study showed that there would be a significant reduction of soil losses from plots if conservation tillage with an intercropping system (maize and soybean) were to be adopted on agricultural lands in semiarid regions.  相似文献   
657.
Abstract

Scholarship on collaboration in natural resource management is restricted by a lack of large-N assessments and mixed methods approach to examine relationships between collaborative structures and processes, and management actions and outcomes. This paper examines the relationship between perceived levels of collaboration, collaborative process indicators, and benefits of USDA Forest Service stewardship contracts at a broad spatial and temporal scale using mixed methodology. This study found higher levels of collaboration were strongly associated with jointly initiated processes that included a breadth of interests and utilized a broad range of outreach mechanisms and opportunities for engagement. Highly collaborative processes were closely linked with attaining project objectives and social and economic benefits. Findings contribute to defining collaboration by uncovering the relationship between perceived levels of collaboration, the role of process characteristics, and perceived benefits of collaborative stewardship contracting processes through a large-N dataset (n?=?1,064) and case study (n?=?61) findings.  相似文献   
658.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   
659.
Understanding soil water dynamics and the water balance of tropical coral islands is important for the utilization and management of their limited freshwater resources, which is only from rainfall. However, there is a significant knowledge gap in the influence of soil water on the water cycle of coral islands. Soil water dynamics and the water balance of Zhaoshu Island, Xisha Archipelago were thus investigated using soil moisture measurements and the Hydrus-1D model from October 2018 to September 2019. Over the study period, vegetation transpiration, soil evaporation, groundwater recharge and storage in the vadose zone were approximately 196, 330, 365 and 20 mm, occupying 22%, 36%, 40% and 2% of annual rainfall total (911 mm), respectively. For the wet season (from May to October) these values became 75, 202, 455 and 40 mm, occupying 10%, 26% and 59% and 5% of the seasonal rainfall total (772 mm), respectively. During the dry season (from November to April), a dry soil layer between 40 and 120 cm depth of the soil profile was identified that prevented water exchange between the upper soil layers and the groundwater resulting in the development of deep roots so that vegetation could extract groundwater to supplement their water requirements. Vegetation not only consumes all dry season rainfall (140 mm) but extracts water deeply from groundwater (90 mm) as well as from the vadose layer (20 mm). As such, the vegetation appears to be groundwater-dependent ecosystems. The research results aid us to better understand the process of water dynamics on coral islands and to protect coral island ecosystems.  相似文献   
660.
Tracer studies have been key to unravelling catchment hydrological processes, yet most insights have been gained in environments with relatively low human impact. We investigated the spatial variability of stream isotopes and water ages to infer dominant flow paths in a ~10-km2 nested catchment in a disturbed, predominantly agricultural environment in Scotland. We collected long-term (>5 years) stable isotope data of precipitation, artificial drainage, and four streams with varying soil and land use types in their catchment areas. Using a gamma model, Mean Transit Times (MTTs) were then estimated in order to understand the spatial variability of controls on water ages. Despite contrasting catchment characteristics, we found that MTTs in the streams were generally very similar and short (<1 year). MTTs of water in artificial drains were even shorter, ranging between 1 to 10 months for a typical field drain and <0.5 to 1 month for a country road drain. At the catchment scale, lack of heterogeneity in the response could be explained by the extensive artificial surface and subsurface drainage, “short-circuiting” younger water to the streams during storms. Under such conditions, additional intense disturbance associated with highway construction during the study period had no major effect on the stream isotope dynamics. Supplementary short-term (~14 months) sampling of mobile soil water in dominant soil-land use units also revealed that agricultural practices (ploughing of poorly draining soils and soil compaction due to grazing on freely draining soils) resulted in subtle MTT variations in soil water in the upper profile. Overall, the isotope dynamics and inferred MTTs suggest that the evolution of stream water ages in such a complex human-influenced environment are largely related to near-surface soil processes and the dominant soil management practices. This has direct implications for understanding and managing flood risk and contaminant transport in such environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号