首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   148篇
  国内免费   74篇
测绘学   44篇
大气科学   122篇
地球物理   355篇
地质学   127篇
海洋学   8篇
天文学   2篇
综合类   26篇
自然地理   237篇
  2024年   5篇
  2023年   7篇
  2022年   18篇
  2021年   56篇
  2020年   58篇
  2019年   43篇
  2018年   33篇
  2017年   38篇
  2016年   31篇
  2015年   32篇
  2014年   56篇
  2013年   91篇
  2012年   52篇
  2011年   52篇
  2010年   37篇
  2009年   31篇
  2008年   37篇
  2007年   32篇
  2006年   25篇
  2005年   31篇
  2004年   27篇
  2003年   14篇
  2002年   16篇
  2001年   21篇
  2000年   16篇
  1999年   11篇
  1998年   13篇
  1997年   11篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1983年   2篇
排序方式: 共有921条查询结果,搜索用时 15 毫秒
91.
The influence of a hedge surrounding bottomland on soil‐water movement along the hillslope was studied on a plot scale for 28 months. The study was based on the comparison of two transects, one with a hedge, the other without, using mainly a dense grid of tensiometers. The influence of the bottomland hedge was located in the area where tree roots were developed, several metres upslope from the hedge, and could be observed both in the saturated and non‐saturated zone, from May to December. The hedge induced a high rate of soil drying, because of the high evaporative capacity of the trees. We evaluated that water uptake by the hedge during the growing season was at least 100 mm higher than without a hedge. This increased drying rate led to a delayed rewetting of the soils upslope from the hedge in autumn, of about 1 month compared with the situation without a hedge. Several consequences of this delayed rewetting are expected: a delay in the return of subsurface transfer from the hillslope to the riparian zone, a buffering effect of hedges on floods, already observed at the catchment scale, and an increased residence time of pollutants. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
92.
93.
随着渔业经济的发展,捕捞强度过大使得渔业资源严重衰退,渔村社区面临转型的困境.以调查村为例从产业结构、管理体制、文化教育管理、生活方式等四个方面对其现实的状况与困境进行分析,并在此基础上提出转型的相应对策措施,以期为相关政府部门的决策提供参考和借鉴.  相似文献   
94.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
95.
Evapotranspiration (ET) is one of the major processes in the hydrological cycle, and its reliable estimation is essential to water resources management. Numerous equations have been developed for estimating ET, most of which are complex and require numerous items of weather data. In many areas, the necessary data are lacking, and simpler techniques are required. Evaporation pans are used throughout the world because of the simplicity of technique, low cost, and ease of application. In this study, the radial basis function (RBF) network is applied for pan evaporation to evapotranspiration conversions. The adaptive pan‐based RBF network was trained using daily Policoro data from 15 May 1981 to 23 December 1983. The RBF network obtained, Christiansen, FAO‐24 pan, and FAO‐56 Penman–Monteith equations were verified in comparison with lysimeter measurements of grass evapotranspiration using daily Policoro data from 25 February to 18 December 1984. Based on summary statistics, the RBF network ranked first with the lowest RMSE value (0·433 mm day?1). The RBF network obtained on the basis of the daily data from Policoro, Italy and pan‐based equations were further tested using mean monthly data collected in Novi Sad, Serbia, and Kimberly, Idaho, USA. The overall results favoured use of the RBF network for pan evaporation to evapotranspiration conversions. The use of the RBF network is very simple and does not require any knowledge of ANNs. Users require only code (RBF network), Epan data and corresponding Ra data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
96.
97.
Variations in reference evapotranspiration (ET0) and drought characteristics play a key role in the effect of climate change on water cycle and associated ecohydrological patterns. The accurate estimation of ET0 is still a challenge due to the lack of meteorological data and the heterogeneity of hydrological system. Although there is an increasing trend in extreme drought events with global climate change, the relationship between ET0 and aridity index in karst areas has been poorly studied. In this study, we used the Penman–Monteith method based on a long time series of meteorological data from 1951 to 2015 to calculate ET0 in a typical karst area, Guilin, Southwest China. The temporal variations in climate variables, ET0 and aridity index (AI) were analyzed with the Mann–Kendall trend test and linear regression to determine the climatic characteristics, associated controlling factors of ET0 variations, and further to estimate the relationship between ET0 and AI. We found that the mean, maximum and minimum temperatures had increased significantly during the 65-year study period, while sunshine duration, wind speed and relative humidity exhibited significant decreasing trends. The annual ET0 showed a significant decreasing trend at the rate of ?8.02 mm/10a. However, significant increase in air temperature should have contributed to the enhancement of ET0, indicating an “evaporation paradox”. In comparison, AI showed a slightly declining trend of ?0.0005/a during 1951–2015. The change in sunshine duration was the major factor causing the decrease in ET0, followed by wind speed. AI had a higher correlation with precipitation amount, indicating that the variations of AI was more dependent on precipitation, but not substantially dependent on the ET0. Although AI was not directly related to ET0, ET0 had a major contribution to seasonal AI changes. The seasonal variations of ET0 played a critical role in dryness/wetness changes to regulate water and energy supply, which can lead to seasonal droughts or water shortages in karst areas. Overall, these findings provide an important reference for the management of agricultural production and water resources, and have an important implication for drought in karst regions of China.  相似文献   
98.
大理州潜在蒸散量的计算及应用   总被引:1,自引:0,他引:1  
利用云南大理州12个气象站1961—2010年气温、日照、风速、蒸发量等观测资料,运用彭曼—蒙蒂斯公式计算大理州潜在蒸散量及湿润度指数,并对大理州潜在蒸散量的时空分布特征进行分析,对干旱情况进行评价。结果表明,大理州潜在蒸散量东部大,南部次之,北部最小。月潜在蒸散量5月最大,12月最小,1—5月递增,5—12月递减。1994—2010的平均潜在蒸散量明显大于1961—1993年。大理州潜在蒸散量与降水量、水汽压、气温、净辐射呈显著正相关关系,与风速没有明显的相关关系。正常年份大理州11月至次年5月都存在不同程度的干旱。  相似文献   
99.
This paper examines a model for estimating canopy resistance rc and reference evapotranspiration ETo on an hourly basis. The experimental data refer to grass at two sites in Spain with semiarid and windy conditions in a typical Mediterranean climate. Measured hourly ETo values were obtained over grass during a 4 year period between 1997 and 2000 using a weighing lysimeter (Zaragoza, northeastern Spain) and an eddy covariance system (Córdoba, southern Spain). The present model is based on the Penman–Monteith (PM) approach, but incorporates a variable canopy resistance rc as an empirical function of the square root of a climatic resistance r* that depends on climatic variables. Values for the variable rc were also computed according to two other approaches: with the rc variable as a straight‐line function of r* (Katerji and Perrier, 1983, Agronomie 3 (6): 513–521) and as a mechanistic function of weather variables as proposed by Todorovic (1999, Journal of Irrigation and Drainage Engineering, ASCE 125 (5): 235–245). In the proposed model, the results show that rc/ra (where ra is the aerodynamic resistance) presents a dependence on the square root of r*/ra, as the best approach with empirically derived global parameters. When estimating hourly ETo values, we compared the performance of the PM equation using those estimated variable rc values with the PM equation as proposed by the Food and Agriculture Organization, with a constant rc = 70 s m?1. The results confirmed the relative robustness of the PM method with constant rc, but also revealed a tendency to underestimate the measured values when ETo is high. Under the semiarid conditions of the two experimental sites, slightly better estimates of ETo were obtained when an estimated variable rc was used. Although the improvement was limited, the best estimates were provided by the Todorovic and the proposed methods. The proposed approach for rc as a function of the square root of r* may be considered as an alternative for modelling rc, since the results suggest that the global coefficients of this locally calibrated relationship might be generalized to other climatic regions. It may also be useful to incorporate the effects of variable canopy resistances into other climatic and hydrological models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
100.
There is little knowledge available about infiltration and evaporation processes in wadi channels in arid regions. This work was conducted to determine the actual evaporation from bare soils in wadi channels in the south-western region of the Kingdom of Saudi Arabia. The estimation of soil evaporation is highly dependent on the availability of moisture in the upper layers of alluvial wadis, in which the areal rainfall, flood hydrograph and soil properties play a significant part. The study was conducted by estimating the actual evaporation using soil moisture data, precipitation and runoff depths in a representative basin. The results are compared with potential rates. The actual rates were 1.5 mm/day immediately after a rainy day and then decreased to 0.42 mm/day. The minimum rate was about 0.1–0.2 mm/day during the dry season. The potential rates were about 9.5 mm/day in June and July, decreasing to 3.5 mm/day in December and January.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号