首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   152篇
  国内免费   74篇
测绘学   44篇
大气科学   126篇
地球物理   355篇
地质学   134篇
海洋学   8篇
天文学   2篇
综合类   26篇
自然地理   237篇
  2024年   5篇
  2023年   8篇
  2022年   18篇
  2021年   60篇
  2020年   59篇
  2019年   44篇
  2018年   34篇
  2017年   38篇
  2016年   31篇
  2015年   32篇
  2014年   57篇
  2013年   91篇
  2012年   52篇
  2011年   52篇
  2010年   38篇
  2009年   32篇
  2008年   37篇
  2007年   32篇
  2006年   25篇
  2005年   31篇
  2004年   27篇
  2003年   14篇
  2002年   16篇
  2001年   21篇
  2000年   16篇
  1999年   11篇
  1998年   13篇
  1997年   11篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1983年   2篇
排序方式: 共有932条查询结果,搜索用时 31 毫秒
141.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   
142.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
143.
GPS数据处理教学课程体系设置探讨   总被引:4,自引:0,他引:4  
随着卫星定位技术的发展和应用拓广,测绘工程专业本科毕业生要求掌握卫星导航定位系统的外业数据采集、内业数据处理方法和软件操作,这也是测绘教学的重点之一。对GPS数据处理课程体系设置进行探讨:教学内容重点的合理设置、教学方法优化和有效的考核方式促进学生理论应用到实践,提高GPS工程项目数据处理的实际作业能力,以满足培养社会需求的专业技术人才。  相似文献   
144.
145.
The feasibility of polynomial chaos expansion (PCE) and response surface method (RSM) models is investigated for modelling reference evapotranspiration (ET0). The modelling results of the proposed models are validated against the M5 model tree and multi-layer perceptron neural network (MLPNN) methods. Two meteorological stations, Isparta and Antalya, in the Mediterranean region of Turkey, are inspected. Various input combinations of daily air temperature, solar radiation, wind speed and relative humidity are constructed as input attributes for the ET0. Generally, the modelling accuracy is increased by increasing the number of inputs. Including wind speed in the model inputs considerably increases their accuracy in modelling ET0. Mean absolute error (MAE), root mean square error (RMSE), agreement index (d) and Nash-Sutcliffe efficiency (NSE) are used as comparison criteria. The PCE is the most accurate model in estimating daily ET0, giving the lowest MAE (0.036 and 0.037 mm) and RMSE (0.047 and 0.050 mm) and the highest d (0.9998 and 0.9999) and NSE (0.9992 and 0.9996) with the four-input PCE models for Isparta and Antalya, respectively.  相似文献   
146.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
147.
利用遥感获取的植被指数和地表温度信息,进行地表能量和水分平衡过程研究是目前陆表过程研究的前沿。根据地表能量和水分平衡原理,对地表温度(Ts)、植被指数(VI),地表蒸散发(ET)之间的空间关系进行了分析,并基于假设条件,构建了温度植被蒸散指数(TVETI)。为验证TVETI表征地表蒸散的能力,利用环境卫星数据和SEBAL模型,对SEBAL模型中各能量通量构建的蒸散指数与TVETI进行线性回归分析,从2012年4~9月6个不同日期的确定性系数分别为:0.838、0.935、0.912、0.921、0.926、0.825, TVETI能很好的表征地表蒸散能力。通过对SEBAL模型估算的ET和TVETI估算的ET进行交叉验证发现,两者大小一致性显著, TVETI可以实现区域尺度地表蒸散发的快速估算。  相似文献   
148.
1971-2010年若尔盖湿地潜在蒸散量及地表湿润度的变化趋势   总被引:1,自引:1,他引:0  
利用若尔盖、红原、玛曲3个气象站1971-2010年的地面气象观测资料,根据Penman-Monteith模型计算了若尔盖湿地的潜在蒸散量,发现若尔盖湿地年潜在蒸散量呈明显上升的趋势,上升趋势为9.1 mm/10a;若尔盖湿地潜在蒸散量在2001年出现了增大突变,2001-2010年平均潜在蒸散量比1971-2000年上升了28.6 mm;各季节潜在蒸散量均呈上升趋势,其中以秋季上升最明显,上升趋势为4.3 mm/10a。导致若尔盖湿地潜在蒸散量上升的主要气象因子是温度上升、相对湿度下降和降水量的减少,虽然日照时数减少和风速减小有利于潜在蒸散量的下降,但由于气温上升的趋势更明显,影响更大,所以若尔盖湿地潜在蒸散量呈明显的上升趋势。近40 a若尔盖湿地地表湿润度以-0.03/10a的趋势减小,其中2001-2010年比1981-1990年下降了0.11,下降十分明显;与此同时,年平均气温以0.41℃/10a的趋势上升,降水量以-13.5 mm/10a的趋势减少,虽然若尔盖湿地仍属于湿润区,但出现了明显的暖干化趋势。  相似文献   
149.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
150.
In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration(ET) over the Sanjiang Plain,Northeast China.Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index(NDVI) time series data,which were reconstructed based on the Savitzky-Golay filtering approach.The MODIS product Quality Assessment Science Data Sets(QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling.This provided 12 overpasses during 184-day growing season from May 1st to October 31st,2006.Daily ET estimated by the SEBAL model was misestimaed at the range of-11.29% to 27.57% compared with that measured by Eddy Covariance system(10.52% on average).The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation.Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced.Seasonal ET is lower in dry farmland(average(Ave):491 mm) and paddy field(Ave:522 mm) and increases in wetlands to more than 586 mm.As expected,higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain(Ave:823 mm),broadleaf forest(Ave:666 mm) and mixed wood(Ave:622 mm) in the southern/western Sanjiang Plain.The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号