首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4763篇
  免费   538篇
  国内免费   586篇
测绘学   95篇
大气科学   64篇
地球物理   1176篇
地质学   2223篇
海洋学   205篇
天文学   1575篇
综合类   146篇
自然地理   403篇
  2024年   17篇
  2023年   30篇
  2022年   76篇
  2021年   93篇
  2020年   109篇
  2019年   137篇
  2018年   101篇
  2017年   104篇
  2016年   114篇
  2015年   127篇
  2014年   138篇
  2013年   233篇
  2012年   182篇
  2011年   125篇
  2010年   106篇
  2009年   296篇
  2008年   331篇
  2007年   339篇
  2006年   353篇
  2005年   301篇
  2004年   364篇
  2003年   310篇
  2002年   271篇
  2001年   243篇
  2000年   240篇
  1999年   224篇
  1998年   220篇
  1997年   134篇
  1996年   115篇
  1995年   94篇
  1994年   78篇
  1993年   61篇
  1992年   43篇
  1991年   29篇
  1990年   39篇
  1989年   30篇
  1988年   17篇
  1987年   17篇
  1986年   9篇
  1985年   9篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1979年   10篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
排序方式: 共有5887条查询结果,搜索用时 15 毫秒
921.
The transition of sedimentary environments and their organism‐related responses is exemplified in the active margin setting of the Middle Permian in the Southern Kitakami Massif. The transition in the sedimentary environment began with a shallowing‐upward sequence at an upper slope to an outer shelf depositional setting that was associated with a delta system which transported abundant botanic remains in the Hoso‐o Formation. By contrast, the sediments of the overlying Kamiyasse Formation, the base of which is roughly equivalent to the lowermost Capitanian, were deposited at a lower shoreface to the outer shelf setting, which originated from complex depositional sources, including beach, near shore reef mounds and a nearby independent area of shallow and hard substratum with a considerable difference of depth. This unique depositional setting resulted in the seemingly ‘mixed’ fauna associated with this formation. The depositional environment of the overlying Kurosawa Formation is similar to that of the Hoso‐o Formation, but with far fewer monotonous biotic remains. A comparison of lithological characteristics and fossil remains with those of neighboring regions suggests that the independent mounds were generated as if the talus formed elsewhere so as to provide a large amount of skeletal elements to a deeper basin in the earliest Capitanian. Accordingly, the complex sedimentary setting observed in the Kamiyasse Formation occurs widely throughout the South Kitakami Massif, making possible the ‘mixed’ and seemingly diverse fauna from a mixture of multiple allochthonous origins.  相似文献   
922.
Instability structures, synsedimentary faults and turbidites have been studied in the Lower Pliensbachian succession of Saint-Michel-en-Beaumont, belonging to the Taillefer block, an ancient half-graben emplaced during the Liassic Tethyan rifting. Geometrical and mechanical analyses demonstrate that the instability structures occurred thanks to movements along spineless synsedimentary normal faults, when the turbiditic and limestone layers were already case-hardened and partly fractured by tension gashes even when the mudstones were still unlithified. Both the tension gashes and the synsedimentary faults are homogeneous in strike with the major regional faults and are in good agreement with the regional direction of extension for this period. The characters of the turbiditic beds, with erosive base, graded bedding, and incomplete Bouma sequence, are in favour of a seismic origin. Instability structures, spineless synsedimentary faults and turbiditic inflows are thus considered as seismites and interpreted as the result of high seismicity periods including some events with M > 5 in the general extensive ambiance of the Liassic Tethyan rifting. The analysis of the geometrical relationships between all these sedimentary features allows to distinguish the successive stage of occurrence of an instability structure, from the sedimentation of alternating marls and limestones, and sudden turbiditic inflows, then early case-hardening of the turbidites, until the important seismotectonic event generating the spineless normal faults, themselves triggering the fall of indurated blocks and locally the forming of breccias. The Ornon Fault, which constitutes the border of the Taillefer block, 15 km eastward, played a major role during the Liassic sedimentation and may represent the major seismic fault related to the seismites occurrence in the Beaumont basin.  相似文献   
923.
对松嫩平原旱地、水田和草地3种不同土地利用类型的黑土进行了为期90天的实验室培养.研究发现,土壤呼吸强度表现为在初期达到一个最大值后不断下降,随后趋于稳定.4个不同温度条件下(5℃、15℃、25℃和35℃),各类型土壤的呼吸强度均随温度的升高而同步增强.在相同温度条件下,土壤呼吸强度强弱顺序为:水田黑土>草地黑土>旱地...  相似文献   
924.
应用瞬变电磁法小线框大电流探测隐伏断层   总被引:1,自引:0,他引:1  
瞬变电磁法小线框、大电流技术在金属矿勘探和地下水的探测中已趋成熟。在长期实践的基础上,分析断层上方出现的感应二次场V2 负值现象和成因,提出断层和次新断层以及地质塌陷的探测方法和数据处理的要点,总结出利用小线框、大电流瞬变电磁法探测隐伏断层的技术方法。钻井验证表明,该方法施工快速轻便,断层点定位准确。  相似文献   
925.
秋树湾铜钼矿的成矿母岩—秋树湾花岗斑岩具有高硅、高铝、高Ba、高Sr、富碱、富钾、低镁、贫钙、低稀土总量、铕异常不明显、富集大离子亲石、低Nb和Ti等特点,与苏格兰北部高Ba-Sr花岗岩类似。雁来岭花岗岩较秋树湾花岗岩具全碱指数、铝质指数、ΣREE更高,δEu异常更明显,大离子亲石元素的富集程度差等特点,与低Ba-Sr花岗岩类似。秋树湾高Ba-Sr花岗岩的产出说明该区在晚侏罗—早白垩世发生过壳幔混合作用,代表当时本区可能处于碰撞造山后的局部伸展作用的大地构造环境中。  相似文献   
926.
岩浆活动在沉积盆地中是非常广泛的.随着油气勘探领域的扩展,对沉积盆地火成岩及相关构造的研究愈加重要.沉积盆地火成构造是指在沉积盆地中由岩浆侵入或喷发作用形成的岩浆和围岩及上覆层变形构造的总和.当前,利用三维地震数据研究岩席的几何学与侵位机制取得了重要进展,开启了沉积盆地火成构造研究的新时代.三维地震分析是沉积盆地火成构...  相似文献   
927.
The geometry and timing of amalgamation of the North China craton(NCC) have been controversial,with three main models with significantly different interpretations of regional structure,geochronology,and geological relationships.The model of Zhao G C et al.suggests that the eastern and western blocks of the NCC formed separately in the Archean,and an active margin was developed on the eastern block between 2.5 and 1.85 Ga,when the two blocks collided above an east dipping subduc-tion zone.The model of Kusky ...  相似文献   
928.
The different hydrodynamic behaviour of detrital clay minerals in the marine depositional environment allows assessment of relative sea‐level variations in the sedimentary record. Comparison of smectite and kaolinite:illite (S+K:I) changes with the global sea‐level curves and with the third‐order cycles of the eustatic curve for European basins allows assessment of the influence of global eustasy and local tectonics on sequence stratigraphy. In the South Iberian Margin, sedimentation took place both on open‐marine platforms and in deeper water areas. On this margin during the Late Oligocene to Early Aquitanian, the variations in sedimentation were caused not only by global eustasy but also by compressive tectonics. Correlations were made between the S+K:I cycles and the third‐order cycles for European basins, enabling the definition of four third‐order sedimentary sequences (here called C1, C2, C3, and A1) and two lower‐order sequences within C3 and A1 (here called C3a, C3b, A1a, and A1b) related to tectonic movements. High S+K:I values were observed during episodes of maximum flooding in each sequence and lower‐order sequence and in each succession, enabling changes in palaeocoastal morphology to be considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
929.
A temperature‐time history for the granulite‐hosted Challenger gold deposit in the Christie Domain of the Gawler Craton, South Australia, has been derived using a range of isotopic decay systems including U–Pb, Sm–Nd, Rb–Sr and 40Ar/39Ar. Nd model ages and detrital zircon ages suggest a protolith age of ca 2900 Ma for the Challenger Gneiss. Gold mineralisation was probably introduced under greenschist/amphibolite‐facies conditions towards the end of the Archaean, between 2800 and 2550 Ma. However, evidence for the exact age and P‐T conditions of this event was almost completely removed by granulite‐facies metamorphism during the Sleafordian Orogeny, which peaked around ca 2447 Ma. Cooling to 350°C occurred before 2060 Ma. It is possible that the Christie Domain was then subject to further sedimentation and volcanism in the period ca 2000–1800 Ma before reburial and a second period of orogeny around ca 1710–1615 Ma. During this second orogeny, the eastern Christie Domain experienced heterogeneous fluid‐induced retrograde metamorphism at lower greenschist‐ to amphibolite‐facies conditions, with metamorphic grade varying between structural blocks. At this time, the Challenger deposit was subject to greenschist‐facies conditions (not significantly hotter than 350°C), while at Mt Christie (50 km to the south) lower amphibolite‐facies conditions prevailed and to the west the Ifould Block experienced extensive plutonism. A third very low‐temperature thermal pulse around ca 1531 Ma, which reached ~ 150–200°C, is recorded at the Challenger deposit. It is likely that the global Grenvillian Orogeny (1300–1000 Ma) was a major period of domain exhumation and juxtaposition.  相似文献   
930.
Salt beds and salt allochthons are transient features in most sedimentary basins, which through their dissolution can carry, focus and fix base metals. The mineralisation can be subsalt, intrasalt or suprasalt, and the salt body or its breccia can be bedded or halokinetic. In all these evaporite‐associated low‐temperature diagenetic ore deposits there are four common factors that can be used to recognise suitably prepared ground for mineralisation: (i) a dissolving evaporite bed acts either as a supplier of chloride‐rich basinal brines capable of leaching metals, or as a supplier of sulfur and organics that can fix metals; (ii) where the dissolving bed is acting as a supplier of chloride‐rich brines, there is a suitable nearby source of metals that can be leached by these basinal brines (redbeds, thick shales, volcaniclastics, basalts); (iii) there is a stable redox interface where these metalliferous chloride‐rich waters mix with anoxic waters within a pore‐fluid environment that is rich in organics and sulfate/sulfide/H2S; and (iv) there is a salt‐induced focusing mechanism that allows for a stable, long‐term maintenance of the redox front, e.g. the underbelly of the salt bed or allochthon (subsalt deposits), dissolution or halokinetically maintained fault activity in the overburden (suprasalt deposits), or a stratabound intrabed evaporite dissolution front (intrasalt deposits). The diagenetic evaporite ‐ base‐metal association includes world‐class Cu deposits, such as the Kupferschiefer‐style Lubin deposits of Poland and the large accumulations in the Dzhezkazgan region of Kazakhstan. The Lubin deposits are subsalt and occur where long‐term dissolution of salt, in conjunction with upwelling metalliferous basin brines, created a stable redox front, now indicated by the facies of the Rote Faule. The Dzhezkazgan deposits (as well as smaller scale Lisbon Valley style deposits) are suprasalt halokinetic features and formed where a dissolving halite‐dominated salt dome maintained a structural focus to a regional redox interface. Halokinesis and dissolution of the salt bed also drove the subsalt circulation system whereby metalliferous saline brines convectively leached underlying sediments. In both scenarios, the resulting redox‐precipitated sulfides are zoned and arranged in the order Cu, Pb, Zn as one moves away from the zone of salt‐solution supplied brines. This redox zonation can be used as a regional pointer to both mineralisation and, more academically, to the position of a former salt bed. In the fault‐fed suprasalt accumulations the feeder faults were typically created and maintained by the jiggling of brittle overburden blocks atop a moving and dissolving salt unit. A similar mechanism localises many of the caprock replacement haloes seen in the diapiric provinces of the Gulf of Mexico and Northern Africa. Evaporite‐associated Pb–Zn deposits, like Cu deposits, are focused by brine flows associated with both bedded and halokinetic salt units or their residues. Stratabound deposits, such as Gays River and Cadjebut, have formed immediately adjacent to or within the bedded salt body, with the bedded sulfate acting as a sulfur source. In allochthon/diapir deposits the Pb–Zn mineralisation can occur both within a caprock or adjacent to the salt structure as replacements of peridiapiric organic‐rich pyritic sediments. In the latter case the conditions of bottom anoxia that allowed the preservation of pyrite were created by the presence of brine springs and seeps fed from the dissolution of nearby salt sheets and diapirs. The deposits in the peridiapiric group tend to be widespread, but individual deposits tend to be relatively small and many are subeconomic. However, their occurrence indicates an active metal‐cycling mechanism in the basin. Given the right association of salt allochthon, tectonics, source substrate and brine ponding, the system can form much less common but world‐class deposits where base‐metal sulfides replaced pyritic laminites at burial depths ranging from centimetres to kilometres. This set of diagenetic brine‐focusing mechanisms are active today beneath the floor of the Atlantis II Deep and are thought to have their ancient counterparts in some Proterozoic sedex deposits. The position of the allochthon, its lateral continuity, and the type of sediment it overlies controls the size of the accumulation and whether it is Cu or Pb–Zn dominated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号