ABSTRACT The Ganjiang River is the largest tributary of Poyang Lake in China, and its hydrological regime variation greatly affects the utilization of regional water resources and the ecological environment of the lake. In this study, a novel trend analysis method, the Moving Average over Shifting Horizon (MASH), was applied to investigate the inter- and intra-annual trends of flow and water level from 1976 to 2016 at the Xiajiang and the Waizhou hydrological stations in the Ganjiang River. The Significant Change Rate Method (SCRM) was proposed to determine the MASH averaging parameters. The trend analysis results show a statistically significant decrease in water level series throughout the year and the relationship of flow and water level have changed greatly at the Waizhou station. The sediment load reduction, large-scale sand mining and water level decrease of Poyang Lake are identified as the main causes for the water level decrease. 相似文献
Strata behaviors are mainly affected by regional geodynamic background. The influence of rock mass stress and energy distribution on strata behaviors in the Tongxin mine is studied in terms of regional tectonic movement, seismic activity and tectonic stress field. The results show that the extrusion lifting movement of Kouquan fault adjacent to the Tongxin mine results in the stress concentration in the rock of the Carboniferous coal bed and accumulation of a large amount of elastic energy and forms structural background of Tongxin mine. Due to various seismic activities in the mine area, the strain energy is known to reach much higher levels, up to 0.5×108J1/2. Since the stratigraphic structure is sensitive to the mining operation, the strain energy could cause strong strata behaviors. A special geological structure model of the Tongxin mine is established based on the geodynamic division method. The distribution of regional structure stress field is determined by the rock mass stress analysis system. Based on this model, Tongxin mine is divided into five areas with high stress, eight areas with low stress and eight areas with gradient stress. The strong strata behaviors mostly occur in high stress areas. These results could provide guidance to predict the strength of regional or mine pressure and control strata behavior in different areas. 相似文献
The objectives of this study are as follows: (a) an assessment of the geochemical background signature of the Drava Valley before the industrial revolution; (b) an evaluation of anthropogenic geochemical influences on the alluvial plains and river terraces in the valley; and (c) a determination of the spatial distribution of trace elements in the alluvial soils of the Drava River downstream of the Austrian–Slovenian border to the confluence of Mura and Drava Rivers. 相似文献
琼北地区铺前−清澜断裂是一条关系到1605年琼山7½级大地震发震构造判断的重要断裂。为准确厘定该断裂的最新活动特征,针对琼北地区第四纪玄武岩盖层和巨厚海相砂沉积等地质条件,采用大吨位震源的浅层人工地震勘探和小间距钻孔联合地质剖面探测相结合的方法,分别在海口江东三江镇岐山头村和东寨村展开探测。结果表明:(1) 铺前−清澜断裂断错了多个标志地层,最浅断错至全新统烟墩组淤泥层,上断点埋深10 m左右,钻探所揭示的断层面明显具有走滑兼具逆冲性质,是一条具有一定宽度、多分支、多期次活动的大规模断裂带;(2)钻孔联合地质剖面所揭示的地层深度范围内,被断错地层的位移量随着深度增加而加大,铺前−清澜断裂自8 346~7 153 a cal BP以来有过活动,全新世累计垂直位移量4~5 m,垂直位移速率为0.53~0.63 mm/a,推断其为1605年琼山大地震的发震断裂。本研究取得的铺前−清澜断裂全新世活动的新证据,为国土空间规划和区域地震危险性评价提供了科学依据。
Two fundamentally different types of silicic volcanic rocks formed during the Cenozoic of the western Cordillera of the United
States. Large volumes of dacite and rhyolite, mostly ignimbrites, erupted in the Oligocene in what is now the Great Basin
and contrast with rhyolites erupted along the Snake River Plain during the Late Cenozoic. The Great Basin dacites and rhyolites
are generally calc-alkaline, magnesian, oxidized, wet, cool (<850°C), Sr-and Al-rich, and Fe-poor. These silicic rocks are
interpreted to have been derived from mafic parent magmas generated by dehydration of oceanic lithosphere and melting in the
mantle wedge above a subduction zone. Plagioclase fractionation was minimized by the high water fugacity and oxide precipitation
was enhanced by high oxygen fugacity. This resulted in the formation of Si-, Al-, and Sr-rich differentiates with low Fe/Mg
ratios, relatively low temperatures, and declining densities. Magma mixing, large proportions of crustal assimilation, and
polybaric crystal fractionation were all important processes in generating this Oligocene suite. In contrast, most of the
rhyolites of the Snake River Plain are alkaline to calc-alkaline, ferroan, reduced, dry, hot (830–1,050°C), Sr-and Al-poor,
and Nb-and Fe-rich. They are part of a distinctly bimodal sequence with tholeiitic basalt. These characteristics were largely
imposed by their derivation from parental basalt (with low fH2O and low fO2) which formed by partial melting in or above a mantle plume. The differences in intensive parameters caused early precipitation
of plagioclase and retarded crystallization of Fe–Ti oxides. Fractionation led to higher density magmas and mid-crustal entrapment.
Renewed intrusion of mafic magma caused partial melting of the intrusive complex. Varying degrees of partial melting, fractionation,
and minor assimilation of older crust led to the array of rhyolite compositions. Only very small volumes of distinctive rhyolite
were derived by fractional crystallization of Fe-rich intermediate magmas like those of the Craters of the Moon-Cedar Butte
trend.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献