首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   19篇
  国内免费   60篇
测绘学   2篇
地球物理   67篇
地质学   271篇
海洋学   21篇
天文学   74篇
自然地理   23篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   9篇
  2016年   3篇
  2015年   5篇
  2014年   25篇
  2013年   24篇
  2012年   16篇
  2011年   22篇
  2010年   20篇
  2009年   33篇
  2008年   31篇
  2007年   23篇
  2006年   27篇
  2005年   34篇
  2004年   23篇
  2003年   24篇
  2002年   28篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1980年   1篇
  1979年   9篇
  1977年   7篇
排序方式: 共有458条查询结果,搜索用时 31 毫秒
11.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   
12.
A numerical rock fragmentation model was elaborated, producing a 3D puzzle of convex polyhedra, geometrically described in a database. In the first scenario, a constant proportion of blocks are fragmented at each step of the process and leads to fractal distribution. In the second scenario, division affects one random block at each stage of the process, and produces a Weibull volume distribution law. Imposing a minimal distance between the fractures, the third scenario reveals a power law. The inhibition of new fractures in the neighbourhood of existing discontinuities could be responsible for fractal properties in rock mass fragmentation. To cite this article: L. Empereur-Mot, T. Villemin, C. R. Geoscience 334 (2002) 127–133.  相似文献   
13.
The differentiation of units in the Sierra de Almagro has been a source of controversy. There were defined the Almagride and Ballabona–Cucharón complexes, the former considered by several authors as part of a Subbetic metamorphosed and outcropping in a tectonic window. In this study, the units of Ballabona, Almagro and Cucharón are integrated into a single one, that of Tres Pacos, because they correspond to different parts of the same stratigraphic series. This unit is tectonically over the Nevado–Filabride Complex. The existence of the Almagride and Ballabona–Cucharón complexes is discarded and their units form part of the Alpujarride Complex. To cite this article: C. Sanz de Galdeano, F.J. Garc??a Tortosa, C. R. Geoscience 334 (2002) 355–362.  相似文献   
14.
The Palaeoproterozoic units of Terre Adélie show two types of structural domains associated with HT–LP metamorphic conditions: domes and NS–N340° striking vertical shear zones. Shear zones reflect dextral transpressive motions. Domes reflect sub-vertical shortening and principal stretching subparallel to shear zones. They could partly result from longitudinal flow coeval with transpression. Deformations are comparable to those described along the eastern and western boundaries of the Archean Gawler Craton (South-East Australia), which underlines the continuity between these two areas before opening of the Austral Ocean. To cite this article: A. Pelletier et al., C. R. Geoscience 334 (2002) 505–511.  相似文献   
15.
A structural transect in the Lower Dolpo highlights that the deformation and metamorphism of the Tibetan Zone (TZ) increase toward the bottom of the sequence. The contact with the underlying HHC is marked by a metamorphic jump from amphibolite facies in the carbonatic rocks of the upper part of the HHC to greenschist facies marbles in the TZ. Moreover, the HHC and the TZ show different metamorphic histories. The contact zone shows a strain increase accompanied by asymmetric folds with a top-to-the-northeast vergence, connected to a down-to-the-northeast tectonic transport. The contact is interpreted as an extensional shear zone, connected to the South Tibetan Detachment System. To cite this article: R. Carosi et al., C. R. Geoscience 334 (2002) 933–940.  相似文献   
16.
We analyse longitudinal river profiles in southwestern Taiwan. As all necessary data are not available, a physical modelling of river erosion would be subject to large uncertainties. We thus shortcut this modelling and adopt simple empirical exponential equations giving riverbed elevation as a function of downstream distance. We identify a positive altimetric anomaly, which reveals active uplift of an anticline at the front of the fold-and-thrust belt. To cite this article: J. Angelier, R.-F. Chen, C. R. Geoscience 334 (2002) 1103–1111.  相似文献   
17.
Oblique convergence since the Early Cenozoic between the northward-moving Australian plate, westward-moving Pacific plate and almost stationary Eurasian plate has created a world-ranking tectonic zone in the eastern Indonesia–New Guinea–Southwest Pacific region (Tonga–Sulawesi megashear) that is notorious for its complex mix of tectonic styles and terrane juxtapositions. Unlike an ancient analog—the Mesozoic–Cenozoic Cordillera of North America—palaeomagnetic constraints on terrane motions in the zone are few. To improve the framework of quantitative control on such motions and therefore our understanding of the development of the zone, results of a palaeomagnetic study in the Highlands region of Papua New Guinea (PNG), in the southern part of the New Guinea Orogen, are reported. The study yields new insights into terrane tectonics along the Australian craton's active northern margin and confirms the complexity of block rotations to be expected at the local scale in tectonically intricate zones. The study is based on more than 500 samples (21 localities) collected from an interior and an exterior zone of New Guinea's central cordillera. The two zones are separated by the Tahin and Stolle–Lagaip–Kaugel Fault zones and collectively represent the para-autochthonous northern margin of the Australian craton. Samples from the interior zone, which in the study area comprises a cratonic spur of uncertain—probably displaced—origin, come from Triassic to Miocene sediments and subordinate volcanics of the Kubor Anticline, Jimi Terrane, and Yaveufa Syncline (16 localities) in the central and eastern Highlands. Samples from the exterior zone, which represent a basement-involved, Pliocene foreland fold-and-thrust belt, come from Middle Eocene to Middle Miocene carbonates and clastics (five localities) in the southern Highlands of the Papuan Fold Belt. Results permit us to constrain the tectonic evolution of the two zones palaeomagnetically. Using mainly thermal demagnetization techniques, three main magnetic components have been identified in the collection: (1) a recent field overprint of both normal and reverse polarity; (2) a pervasive overprint of mainly normal polarity that originated during extensive Middle to Late Miocene intrusive activity in the central cordillera; and (3) a primary component which has been identified in only 7 of the 21 localities (5 of 11 stratigraphic units represented in the collection). All components show patterns of rotation that are consistent within the zones, but differ between them. In the interior zone (central and eastern Highlands), large-scale counterclockwise rotations of between 30°+ and 100°+ have been established throughout the Kubor Anticline and Jimi Terrane, with some clockwise rotation present in the southern part of the Yaveufa Syncline. In contrast, in the Mendi area of the exterior zone (southern Highlands), clockwise rotations of between 30°+ and 50°+ can be recognized. These contrasting rotation patterns across the Tahin and Stolle–Lagaip–Kaugel Fault zones indicate decoupling of the two tectonic zones, probably along basement-involved faults. The clockwise rotations in the southern Highlands of the Papuan Fold Belt are to be expected from its structural grain, and are probably governed by regional basement faults and transverse lineaments. In contrast, the pattern of counterclockwise rotations in the Kubor Anticline–Jimi Terrane cratonic spur of the central and eastern Highlands was unexpected. The pattern is interpreted to result from non-rigid rotation of continental terranes as they were transported westward across the northeastern margin of the Australian craton. This margin became reorganised after the Middle Miocene, when the steadily northward-advancing Australian craton impinged into the westward-moving Pacific plate/buffer-plate system. Transpressional reorganisation under the influence of the sinistral Tonga–Sulawesi megashear became enhanced with Mio-Pliocene docking, and subsequent southward overthrusting, of the Finisterre Terrane onto the northeastern margin of the Australian craton.  相似文献   
18.
We use paleomagnetic data to map Mesozoic absolute motion of North America, using paleomagnetic Euler poles (PEP). First, we address two important questions: (1) How much clockwise rotation has been experienced by crustal blocks within and adjacent to the Colorado Plateau? (2) Why is there disagreement between the apparent polar wander (APW) path constructed using poles from southwestern North America and the alternative path based on poles from eastern North America? Regarding (1), a 10.5° clockwise rotation of the Colorado Plateau about a pole located near 35°N, 102°W seems to fit the evidence best. Regarding (2), it appears that some rock units from the Appalachian region retain a hard overprint acquired during the mid-Cretaceous, when the geomagnetic field had constant normal polarity and APW was negligible.We found three well-defined small-circle APW tracks: 245–200 Ma (PEP at 39.2°N, 245.2°E, R=81.1°, root mean square error (RMS)=1.82°), 200–160 Ma (38.5°N, 270.1°E, R=80.4°, RMS=1.06°), 160 to 125 Ma (45.1°N, 48.5°E, R=60.7°, RMS=1.84°). Intersections of these tracks (the “cusps” of Gordon et al. [Tectonics 3 (1984) 499]) are located at 59.6°N, 69.5°E (the 200 Ma or “J1” cusp) and 48.9°N, 144.0°E (the 160 Ma or “J2” cusp). At these times, the absolute velocity of North America appears to have changed abruptly.North America absolute motion also changed abruptly at the beginning and end of the Cretaceous APW stillstand, currently dated at about 125 and 88 Ma (J. Geophys. Res. 97 (1992b) 19651). During this interval, the APW path degenerates into a single point, implying rotation about an Euler pole coincident with the spin axis.Using our PEP and cusp locations, we calculate the absolute motion of seven points on the North American continent. Our intention is to provide a chronological framework for the analysis of Mesozoic tectonics. Clearly, if APW is caused by plate motion, abrupt changes in absolute motion should correlate with major tectonic events. This follows because large accelerations reflect important changes in the balance of forces acting on the plate, the most important of which are edge effects (subduction, terrane accretion, etc.). Some tectonic interpretations: (1) The J1 cusp may be associated with the inception of rifting of North America away from land masses to the east; the J2 cusp seems to mark the beginning of rapid spreading in the North Atlantic. (2) The J2 cusp signals the beginning of a period of rapid northwestward absolute motion of western North America; motion of tectonostratigraphic terranes in the westernmost Cordillera seems likely to have been directed toward the south during this interval. (3) The interval 88 to 80 Ma saw a rapid decrease in the paleolatitude of North America; unless this represents a period of true polar wander, terrane motion during this time should have been relatively northward.  相似文献   
19.
Africa’s landscape is dominated by a manifold of second-order epeirogenic structures superimposed on a first-order bimodal topography. Bivariate regression analysis of Africa’s surface topography shows that this is a complexly folded surface with regionally elevated areas in southern and eastern Africa, and a topographically low northern and western Africa. The apparent spatial relationships between these features are analysed using anomaly correlation between surface topography and free-air gravity anomalies. Occurrences of positively correlated features between gravity and topography in Africa are found to be limited to second-order epeirogenic features. Geophysical modelling and geologic evidence indicate that Africa’s bimodal topography is genetically distinct from these second-order features, and linked to sources as deep as the sublithospheric mantle. The age, measured and modelled elevation of the bimodal topography require that topographic uplift of south-central Africa be episodic. We infer from our findings together with relative sea-level changes, that the near-bimodality of Africa’s topography is an ancient feature inherited at least from upper Paleozoic times. Our reconstructed paleotopography suggests that Africa was largely a low-lying continent dominated by its cratons, and that basement distribution disregards the present-day uplift patterns of Africa.  相似文献   
20.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号